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Abstract

This paper introduces a new family of consensus protocols, namely Lachesis-
class denoted by L, for distributed networks with guaranteed Byzantine fault
tolerance. Each Lachesis protocol L in £ has complete asynchrony, is lead-
erless, has no round robin, no proof-of-work, and has eventual consensus.

The core concept of our technology is the OPERA chain, generated by
the Lachesis protocol. In the most general form, each node in Lachesis has a
set of k neighbours of most preference. When receiving transactions a node
creates and shares an event block with all neighbours. Each event block is
signed by the hashes of the creating node and its k peers. The OPERA
chain of the event blocks is a Directed Acyclic Graph (DAG); it guarantees
practical Byzantine fault tolerance (pBFT). Our framework is then presented
using Lamport timestamps and concurrent common knowledge.

Further, we present an example of Lachesis consensus protocol Lg of our
framework. Our Ly protocol can reach consensus upon 2/3 of all partici-
pants’ agreement to an event block without any additional communication
overhead. Lg protocol relies on a cost function to identify k peers and to
generate the DAG-based OPERA chain. By creating a binary flag table that
stores connection information and share information between blocks, Lach-
esis achieves consensus in fewer steps than pBFT protocol for consensus.

Keywords: Consensus algorithm, Byzantine fault tolerance, Lachesis
protocol, Lamport timestamp, root, Clotho, Atropos, Main chain
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1. Introduction

Beyond the success of cryptocurrencies, blockchain has recently emerged
as a technology platform that offers secure decentralized consistent transac-
tion ledgers and has powered innovations across domains including financial
systems, supply chains and health care. Despite the high demand in dis-
tributed ledger technology [26], commercialization opportunities have been
obstructed by long processing time for consensus, and high power consump-
tion. These issues have been addressed in consensus algorithms such as
4,9, 23, 24].

Distributed database systems often address Byzantine fault tolerance [13]
in which up to just under one-third of the participant nodes may be compro-
mised. Consensus algorithms ensures the integrity of transactions between
participants over a distributed network [13] and is equivalent to the proof
of Byzantine fault tolerance in distributed database systems [1, 12]. Byzan-
tine consensus is not guaranteed for deterministic, completely asynchronous
system with unbounded delays [8]. But achieving consensus is feasible for
nondeterministic system with probability one.

There are several approaches to consensus in distributed system. The
original Nakamoto consensus protocol in Bitcoin uses Proof of Work (PoW),
which requires large amounts of computational work to generate the blocks by
participants [19]. Alternative schemes such as Proof Of Stake (PoS) [25, 14]
have been proposed. PoS uses participants’ stakes to generate the blocks
respectively. Another approach utilizes directed acyclic graphs (DAG) [16,
23, 24, 21, 17] to facilitate consensus.

Examples of DAG-based consensus algorithms include Tangle [22], Byte-
ball [5], and Hashgraph [2]. Tangle selects the blocks to connect in the net-
work utilizing accumulated weight of nonce and Monte Carlo Markov Chain
(MCMC). Byteball generates a main chain from the DAG and reaches con-
sensus through index information of the chain. Hashgraph connects each
block from a node to another random node. Hashgraph searches whether
2/3 members can reach each block and provides a proof of Byzantine fault
tolerance via graph search.

1.1. Motiwwation

Practical Byzantine Fault Tolerance (pBFT) allows all nodes to success-
fully reach an agreement for a block (information) when a Byzantine node
exists [3]. In pBFT, consensus is reached once a created block is shared with



other participants and the share information is shared with others again
[10, 18]. After consensus is achieved, the block is added to the participants’
chains [3, 6]. Currently, it takes O(N*) for pBFT.

HashGraph [2] proposes “gossip about gossip” and virtual voting to reach
consensus. There are several limitations with HashGraph. First, the algo-
rithm operates on a known network, which needs full awareness of all author-
itative participants. Second, gossip propagation is slow and latency increases
to O(n) with n participants. Third, it remains unclear whether virtual voting
is faster than chain weight aka longest chain/proof of work concept. These
issues are gossip problems and not consensus problems.

We are interested in a new approach to address the aforementioned issues
in pBFT approaches [3, 10, 18] and HashGraph [2]. Specifically, we propose a
new consensus algorithm that addresses the following questions: (1) Can we
reach local consensus in a k-cluster faster for some k7, (2) Can we make gos-
sips faster such as using a broadcast based gossip subset?, (3) Can continuous
common knowledge be used for consensus decisions with high probability?
(4) Can complex decisions be reduced to binary value consensus?

In this paper, we propose a new approach that can quickly search for
Byzantine nodes within the block DAG. In particular, we introduce a new
class of consensus protocols, namely Lachesis protocol denoted by £. The
core idea of Lachesis is to use a new DAG structure, the OPERA chain,
which allows faster path search for consensus. We then propose an example
of the Lachesis protocol class, which is called the Lachesis protocol Ly.

1.2. Generic framework of L Protocols

We introduce a generic framework of Lachesis protocols, called £. The ba-
sic idea of Lachesis protocol is a DAG-based asynchronous non-deterministic
protocol that guarantees pBFT. We propose OPERA chain — a new DAG
structure for faster consensus. Lachesis protocol generates each block asyn-
chronously and the Lachesis algorithm achieves consensus by confirming how
many nodes know the blocks using the OPERA chain. Figure 1 shows an
example of OPERA chain constructed through a Lachesis protocol.

The main concepts of Lachesis are given as follows:

e Event block All nodes can create event blocks as time ¢. The structure
of an event block includes the signature, generation time, transaction
history, and hash information to references. The information of the
referenced event blocks can be copied by each node. The first event
block of each node is called a leaf event.
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Figure 1: An Example of OPERA Chain

e Lachesis protocol Lachesis protocol is the rule-set to communicate be-
tween nodes. When each node creates event blocks, it determines which
nodes choose other nodes to broadcast to. Node selection can be ran-
dom or via some cost function.

e Happened-before Happened-before is the relationship between nodes
which have event blocks. If there is a path from an event block x
to y, then x Happened-before y. “xr Happened-before y” means that
the node creating y knows event block .

e Root An event block is called a root if either (1) it is the first generated
event block of a node, or (2) it can reach more than two-thirds of other
roots. Every root can be candidate for Clotho.

e Root set Root set (R;) is the set of all roots in the frame. The cardinality
of the set is 2n/3 < Ry < n, where n is the number of all nodes.

e Frame Frame f is a natural number that separates Root sets. The frame
increases by 1 in case of a root in the new set (f + 1). And all event
blocks between the new set and the previous Root set are included in
the frame f.



e Flag table The Flag table stores reachability from an event block to an-
other root. The sum of all reachabilities, namely all values in flag
table, indicates the number of reacheabilities from an event block to
other roots.

e Lamport timestamps For topological ordering, Lamport timestamps al-
gorithm uses the happened-before relation to determine a partial order
of the whole event block based on logical clocks.

e Clotho A Clotho is a root that satisfies that they are known by more than
2n/3 nodes and more than 2n/3 nodes know the information that they
are known in nodes. A Clotho can be a candidate for Atropos.

e Atropos An Atropos is assigned consensus time through the Lachesis con-
sensus algorithm and is utilized for determining the order between event
blocks. Atropos blocks form a Main-chain, which allows time consensus
ordering and responses to attacks.

e Reselection To solve the byzantine agreement problem, each node rese-
lects a consensus time for a Clotho, based on the collected consensus
time in the root set of the previous frame. When the consensus time
reaches byzantine agreement, a Clotho is confirmed as an Atropos and
is then used for time consensus ordering.

e OPERA chain The OPERA chain is the local view of the DAG held by
each node, this local view is used to identify topological ordering, select
Clotho, and create time consensus through Atropos selection.

e Main-Chain Main-chain is a core subset of the OPERA chain. It is
comprised of Atropos event blocks. Thus, the OPERA chain uses Main-
chain to find rapid ordering between event blocks. In OPERA chain,
each event block is assigned a proper consensus position.

As a motivating example, Figure 2 illustrates how consensus is reached
through the path search in the OPERA chain. In the figure, leaf set, denoted
by Ry, consists of the first event blocks created by individual participant
nodes. V' is the set of event blocks that do not belong neither in Ry, nor in
any root set R,. Given a vertex v in V U Rg;, there exists a path from v
that can reach a leaf vertex v in Ry. Let r; and r3 be root event blocks in
root set Ry and R, respectively. rq is the block where a quorum or more
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(l) Leaf set: an initial set of vertices by participants
Vertex set (V,): a set of vertices created by participants

Root set (R,): blocks created by participants

Figure 2: Consensus Method through Path Search in a DAG (combines chain with con-
sensus process of pBFT)

blocks exist on a path that reaches a leaf event block. Every path from r; to
a leaf vertex will contain a vertex in V;. Thus, if there exists a vertex r in
V) such that r is created by more than a quorum of participants, then r is
already included in Ry;. Likewise, ro is a block that can be reached for R
including r; through blocks made by a quorum of participants. For all leaf
event blocks that could be reached by ry, they are shared with more than
quorum participants through the presence of r;. The existence of the root
ro shows that information of r; is shared with more than a quorum. This
kind of a path search allows the chain to reach consensus in a similar manner
as the pBFT consensus processes. It is essential to keep track of the blocks
satisfying the pBFT consensus process for quicker path search; our OPERA
chain and Main-chain keep track of these blocks.

1.3. Lachesis protocol Ly

We now introduce a new specific Lachesis consensus protocol, called L.
The new protocol Lg is a DAG-based asynchronous non-deterministic proto-
col that guarantees pBFT. L generates each block asynchronously and uses
the OPERA chain for faster consensus by checking how many nodes know
the blocks.

In this Ly protocol, we propose several algorithms. In particular, we



introduce an algorithm in which a node can identify lazy participants from
cost-effective peers — say its k peers. We must stress that a generic Lachesis
protocol does not depend on any k peer selection algorithm; each node can
choose k peers randomly. Each message created by a node is then signed
by the creating node and its k peers. We also introduce a flag table data
structure that stores connection information of event blocks. The flag table
allows us to quickly traverse the OPERA chain to find reachability between
event blocks.

OPERA chain can be used to optimize path search. By using certain
event blocks (Root, Clotho, and Atropos), Main chain — a core subgraph of
OPERA chain, can maintain reliable information between event blocks and
reach consensus. Generating event blocks via Lachesis protocol, the OPERA
chain and Main chain are updated frequently and can respond strongly to
attack situations such as forking and parasite attack. Further, using the flag
table over the OPERA chain, consensus can be quickly reached, and the
ordering between specific event block can be determined.

1.4. Contributions

In summary, this paper makes the following contributions.

e We propose a new family £ of Lachesis protocols. We introduce the
OPERA chain and Main-chain for faster consensus.

e We define a topological ordering of nodes and event blocks in the
OPERA chain. By using Lamport timestamps, the ordering is more
intuitive and reliable in distributed system. We introduce a flag table
at each block to improve root detection.

e We present proof of how a DAG-based protocol can implement concur-
rent common knowledge for consistent cuts.

e The Lachesis protocols allow for faster node synchronization with k-
neighbor broadcasts.

e A specific Lachesis protocol Lj is then introduced with specific algo-
rithms. The benefits of Lachesis protocol Ly include (1) root selection
algorithm via flag table; (2) an algorithm to build the Main-chain; (3)
an algorithm for k peers selection via cost function; (4) faster consensus
selection via k peer broadcasts; (5) data pruning via root creation.



The rest of this paper is organised as follows. Section 2 gives an overview
of Blockchain related work as well as existing DAG-based protocols. Section 3
describes our new Lachesis protocol. Section 4 presents Lachesis consensus
algorithm. Several discussions about Lachesis protocols are presented in
Section 5. Section 6 concludes with some future work. Section 7. Proof
of Byzantine fault tolerance is described in Section 7.1. In Section 7.2, we
present responses to certain attacks with the Lachesis protocol and consensus
algorithm.

2. Related work

2.1. Lamport timestamps

Lamport [11] defines the "happened before” relation between any pair of
events in a distributed system of machines. The happened before relation,
denoted by —, is defined without using physical clocks to give a partial
ordering of events in the system. The relation ”—" satisfies the following
three conditions: (1) If b and V' are events in the same process, and b comes
before b', then b — /. (2) If b is the sending of a message by one process and
b’ is the receipt of the same message by another process, then b — /. (3) If
b— Ut and O/ — 0" then b — b”. Two distinct events b and O’ are said to be
concurrent if b - b and b’ - b.

The happens before relation can be viewed as a causality effect: that
b — b’ implies event b may causally affect event b’. Two events are concurrent
if neither can causally affect the other.

Lamport introduces logical clocks which is a way of assigning a number
to an event. A clock C; for each process P; is a function which assigns a
number C;(b) to any event b € P;. The entire system of blocks is represented
by the function C' which assigns to any event b the number C(b), where
C(b) = C;(b) if b is an event in process P;. The Clock Condition states that
for any events b, b": if b — b’ then C(b) < C(V').

To satisfies the Clock Condition, the clocks must satisfy two conditions.
First, each process P; increments C; between any two successive events. Sec-
ond, we require that each message m contains a timestamp 7,,,, which equals
the time at which the message was sent. Upon receiving a message times-
tamped T,,, a process must advance its clock to be later than 7,,.

Given any arbitrary total ordering < of the processes, the total ordering
= is defined as follows: if a is an event in process P; and b is an event
in process P;, then b = b’ if and only if either (i) C;(b) < C;(¥') or (ii)
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C(b) = Cj(') and P; < P;. The Clock Condition implies that if b — b then
b=V.

2.2. Concurrent common knowledge

In the Concurrent common knowledge (CCK) paper [20], they define a
model to reason about the concurrent common knowledge in asynchronous,
distributed systems. A system is composed of a set of processes that can
communicate only by sending messages along a fixed set of channels. The
network is not necessarily completely connected. The system is asynchronous
in the sense that there is no global clock in the system, the relative speeds
of processes are independent, and the delivery time of messages is finite but
unbounded.

A local state of a process is denoted by sg . Actions are state transformers;
an action is a function from local states to local states. An action can be
either: a send(m) action where m is a message, a receive(m) action, and
an internal action. A local history, h;, of process i, is a (possibly infinite)

sequence of alternating local states—beginning with a distinguished initial
2

. . ot a?
state—and actions. We write such a sequence as follows: h; = s — s! —

3 . .
s2 2% . The notation of s/ (o) refers to the j-th state (action) in process

i’s local history An event is a tuple (s, a, s') consisting of a state, an action,

and a state. The jth event in process i’s history is e/ denoting (s~ ', a7, s7).

17 7
An asynchronous system consists of the following sets.

1. Aset P = {1,...N} of process identifiers, where NN is the total number
of processes in the system.

2. Aset C C {(i,j) s.t. i,5 € P} of channels. The occurrence of (7, j) in
C indicates that process ¢ can send messages to process j.

3. A set H; of possible local histories for each process i in Proc.

4. A set A of asynchronous runs. Each asynchronous run is a vector of
local histories, one per process, indexed by process identifiers. Thus,
we use the notation a = (hq, ha, hs, ...hx). Constraints on the set A are
described throughout this section.

5. A set M of messages. A message is a triple (i, j, B) where i € Proc is
the sender of the message, j € Proc is the message recipient, and B is
the body of the message. B can be either a special value (e.g. a tag to
denote a special-purpose message), or some proposition about the run
(e.g. “i has reset variable X to zero”), or both. We assume, for ease of
exposition only, that messages are unique.
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The set of channels C' and our assumptions about their behavior induce
two constraints on the runs in A. First, ¢ cannot send a message to j unless
(7,7) is a channel. Second, if the reception of a message m is in the run,
then the sending of m must also be in that run; this implies that the network
cannot introduce spurious messages or alter messages.

The CCK model of an asynchronous system does not mention time.
Events are ordered based on Lamport’s happens-before relation. They use
Lamport’s theory to describe global states of an asynchronous system. A
global state of run a is an n-vector of prefixes of local histories of a, one
prefix per process. The happens-before relation can be used to define a con-
sistent global state, often termed a consistent cut, as follows.

Definition 2.1 (Consistent cut). A consistent cut of a run is any global state
such that if e — ejy- and eg 15 in the global state, then e} is also in the global
state.

A message chain of an asynchronous run is a sequence of messages my,
ma, ms, ..., such that, for all i, receive(m;) — send(m;;1). Consequently,
send(my) — receive(my) — send(msy) — receive(ms) — send(ms) . ...

2.3. Consensus algorithms

In a consensus algorithm, all participant nodes of a distributed network
share transactions and agree integrity of the shared transactions [13]. Tt is
equivalent to the proof of Byzantine fault tolerance in distributed database
systems [1, 12]. The Practical Byzantine Fault Tolerance (pBFT) allows all
nodes to successfully reach an agreement for a block when a Byzantine node
exists [3].

There are numerous consensus algorithms being proposed [4, 9]. Proof
of Work (PoW) requires large amounts of computational work to generate
the blocks [19]. Proof of Stake (PoS) [25, 14] use participants’ stakes and
delegated participants’ stake to generate the blocks respectively. Alternative
schemes are proposed to improve algorithms using directed acyclic graphs
(DAG) [16]. These DAG-based approaches utilize the graph structures to de-
cide consensus; blocks and connections are considered as vertexes and edges,
respectively.

2.4. DAG-based Approaches

IOTA [22] published a DAG-based technology called Tangle. The Tips
concept was used to address scalability issues with the limitations of the

11



Internet of Things. Also, a nonce by using weight level was composed to
achieve the transaction consensus by setting the user’s difficulty. To solve the
double spending problem and parasite attack, they used the Markov Chain
Monte Carlo (MCMC) tip selection algorithm, which randomly selects the
tips based on the size of the accumulated transaction weights. However, if
a transaction conflicts with another, there is still a need to examine all past
transaction history to find the conflict.

Byteball [5] uses an internal pay system called bytes. This is used to
pay for adding data to the distributed database. Each storage unit is linked
to each other that includes one or more hashes of earlier storage units. In
particular, the consensus ordering is composed by selecting a single Main
Chain, which is determined as a root consisting of the most roots. A majority
of roots detects the double-spend attempts through consensus time of Main
Chain. The fee is charged according to the size of the bytes, and the list of
all units should be searched and updated in the process of determining the
roots.

RaiBlocks [15] has been developed to improve high fees and slow trans-
action processing. It is a process of obtaining consensus through the balance
weighted vote on conflicting transactions. Each node participating in the
network becomes the principal and manages its data history locally. How-
ever, since RaiBlocks generate transactions in a similar way to an anti-spam
tool of PoW, all nodes must communicate to create transactions. In terms of
scalability, there is a need for steps to verify the entire history of transactions
when a new node is added.

Hashgraph [2] is an asynchronous DAG-based distributed ledger. Each
node is connected by its own ancestor and randomly communicates known
events through a gossip protocol. At this time, any famous node can be
determined by the see and strong see relationship at each round to reach
consensus quickly. They state that if more than 2/3 of the nodes reach
consensus for an event, it will be assigned consensus position.

Conflux [17] is a DAG-based Nakamoto consensus protocol. Conflux is a
fast, scalable and decentralized block chain system that optimistically pro-
cesses concurrent blocks without discarding any as forks. The Conflux pro-
tocol achieves consensus on a total order of the blocks. The total order of the
transactions is decided by all participants of the network. Conflux can toler-
ate up to half of the network as malicious while the BFT-based approaches
can only tolerate up to one third of malicious nodes.

Parsec [21] proposes an algorithm for reaching consensus in the presence
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of Byzantine faults in a randomly synchronous network. Like Hashgraph [2],
it has no leaders, no round robin, no proof-of-work and reaches eventual con-
sensus with probability one. Unlike Hashgraph, it can provide high speed
even in the presence of faults. Parsec algorithm reaches BF'T consensus with
very weak synchrony assumptions. Messages are delivered with random de-
lays, such that the average delay is finite. It allows up to one-third Byzantine
(arbitrary) failures.

Phantom [24] is a PoW based protocol for a permissionless ledger that
generalizes Nakamoto’s blockchain to a DAG of blocks. PHANTOM includes
a parameter k to adjust the tolerance level of the protocol to blocks that were
created concurrently, which can be set to accommodate higher throughput. It
thus avoids the security-scalability tradeoff as in Satoshi’s protocol. PHAN-
TOM uses a greedy algorithm on the DAG to distinguish between blocks
by honest nodes and those by non-cooperating nodes. This distinction gives
PHANTOM a robust total order of the blocks that is eventually agreed upon
by all honest nodes.

Similar to PHANTOM, the GHOSTDAG protocol selects a k-cluster,
which induces a colouring of the blocks as Blues (blocks in the selected clus-
ter) and Reds (blocks outside the cluster). However, instead of searching for
the largest k-cluster, GHOSTDAG finds a cluster using a greedy algorithm.

Spectre [23] is a new protocol for the consensus core of cryptocurrencies.
SPECTRE, which is PoW-based protocol, relies on a data structure that gen-
eralizes Nakamoto’s blockchain into a DAG. It remains secure from attackers
with up to 50% of the computational power even under high throughput and
fast confirmation times. Sprectre protocol satisfies weaker properties than
classic consensus requires. In SPECTRE, the order between any two trans-
actions can be decided from transactions performed by honest users. This is
different from the conventional paradigm in which the order must be decided
by all non-corrupt nodes.

Blockmania [6] is a mechanism to achieve consensus with several advan-
tages over the more traditional pBF'T protocol and its variants. In Blockma-
nia nodes in a quorum only emit blocks linking to other blocks, irrespective of
the consensus state machine. The resulting directed acyclic graph of blocks
(block DAG) is later interpreted to ensure consensus safety, finality and live-
liness. The resulting system has communication complexity O(N?) even in
the worse case, and low constant factors — as compared to O(N*) for pBFT.
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3. Generic framework of Lachesis Protocols

This section describes the key concepts of our new family of Lachesis
protocols.

3.1. OPERA chain

The core idea of Lachesis protocols is to use a DAG-based structure,
called OPERA chain for our consensus algorithm. In Lachesis protocol, a
(participant) node is a server (machine) of the distributed system. Each
node can create messages, send messages to and receive messages from other
nodes. The communication between nodes is asynchronous.

Lachesis Protocol consists of event blocks including user information and
edges between event blocks. In Lachesis Protocol, event blocks are created
by a node after the node communicates information of OPERA chain with
another node. The OPERA chain is comprised of event blocks as vertices
and block communication as edges.

Let n be the number of participant nodes. For consensus, the algorithm
examines whether an event block is shared with 2n/3 nodes, where n is the
number of all nodes. Sharing an event block with 2n/3 nodes means that
more than two-thirds of all nodes in the OPERA chain knows the event block.

3.2. Main-chain

For faster consensus, we introduce the Main-chain, which is a special sub-
graph of the OPERA chain. To improve path search, we propose to use a
local hash table structure as a cache that is used to quickly determine the
closest root to a event block.

In the OPERA chain, an event block is called a root if the event block is
linked to more than two-thirds of previous roots. A leaf vertex is also a root
itself. With root event blocks, we can keep track of “vital” blocks that 2n/3
of the network agree on.

The Main chain — a core subgraph of OPERA chain, plays the important
role for ordering the event blocks. The Main chain stores shortcuts to connect
between the Atropos. After the topological ordering is computed over all
event blocks through Lachesis protocol, Atropos blocks are determined and
form the Main chain. Figure 3 shows an example of Main chain composed
of Atropos event blocks. In particular, the Main chain consists of Atropos
blocks those are derived from root blocks and so are agreed by 2n/3 of the
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network nodes. Thus, this guarantees that at least 2n/3 of nodes have come
to consensus on this Main chain.

Each participant node has a copy of the Main chain and can search con-
sensus position of its own event blocks. Each event block can compute its
own consensus position by checking the nearest Atropos event block. Assign-
ing and searching consensus position are introduced in the consensus time
selection section.

The Main chain provides quick access to the previous transaction history
to efficiently process new coming event blocks. From Main chain, informa-
tion about unknown participants or attackers can be easily viewed. The Main
chain can be used efficiently in transaction information management by pro-
viding quick access to new event blocks that have been agreed on by the
majority of nodes. In short, the Main-chain gives the following advantages:

- All event blocks or nodes do not need to store all information. It is
efficient for data management.

- Access to previous information is efficient and fast.

Based on these advantages, OPERA chain can respond strongly to effi-
cient transaction treatment and attacks through its Main-chain.

Blockl

Figure 3: An Example of Main-chain
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3.3. Lachesis Consensus Algorithm (LCA)

Our Lachesis algorithm (LCA) is presented. LCA is one of the consen-
sus algorithms for solving the byzantine agreement problem. In LCA, the
OPERA chain uses root, Clotho and Atropos blocks to find consensus time
for event blocks. Algorithm 1 shows the pseudo algorithm of a OPERA chain.
The algorithm consists of two parts and runs them in parallel.

- In one part, each node requests synchronization and creates an event
block. In line 3, a node runs the Node Selection Algorithm. The Node
Selection Algorithm returns the k IDs of other nodes to communicate with.
In line 4 and 5, the node synchronizes the OPERA chain with other nodes.
Line 6 runs the Event block creation, at which step the node creates an event
block and checks whether it is root. Then the node broadcasts the created
event block to other nodes in line 7. The step in this line is optional. In line 8
and 9, Clotho selection and Atropos time consensus algorithms are invoked.
The algorithms determinte whether the specified root can be a Clotho, assign
the consensus time, and then confirm the Atropos.

- The second part is to respond to synchronization requests. In line 10 and

11, the node receives a synchronization request and then sends its response
about the OPERA chain.

Algorithm 1 Main Procedure
1: procedure MAIN PROCEDURE
2: loop:
3: A, B = k-node Selection algorithm()

4: Request sync to node A and B

5: Sync all known events by Lachesis protocol
6: Event block creation

7: (optional) Broadcast out the message

8: Root selection

9: Clotho selection

10: Atropos time consensus

11: loop:

12: Request sync from a node

13: Sync all known events by Lachesis protocol

3.4. Node Structure
This section gives an overview of node structure in Lachesis.
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Each node has a signature stamp, height vector, in-degree vector, flag
table, root hash list, and Main-chain. Signature stamp is the data structure
for storing the hash value that indicates the most recently created event block
by the node. We call the most recently created event block the top event
block. The flag table is a n dimensional vector. If an event block e created by
i'" node can reach j' root, then the 5% value in the flag table of e becomes
1 (otherwise 0). Each node only maintains the flag table of the top event
block.

* Signature Stamp

Node
ignature,

* Height Vector
1 2 | e n
hy h, | ... hy

* In-degree Vector

1 /N n
il iz ...... in
* Root Hash List
| rhy | rh, | rhs | ...... |

* OPERA chain

Figure 4: An Example of Node Structure

Figure 4 shows an example of the node structure component of a node
A. In the figure, the signature, stores the hash value of the top event block
of A. Each value in the height vector is the number of event blocks created
by other nodes respectively. The value of h; is the number of event blocks
created by the i** node. Each value in the in-degree vector is the number of
edges from other event blocks created by other nodes to the top event block.
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The root hash list is the data structure storing the hash values of the root.
The Main-chain is a data structure storing hash values of the Atropos blocks.
The Main-chain is used to find event blocks with complete consensus. The
root, Clotho and Atropos selection algorithm are introduced in Section 4.

3.5. Event block creation

In Lachesis protocol, every node can create an event block. Each event
block refers to other event blocks. Reference means that the event block
stores the hash values of the other event blocks. In a Lachesis protocol, an
event block refers to k-neighbor event blocks under the conditions as follows,

1. The reference event blocks are the top event blocks.
2. One reference should be made to a self-parent.
3. The own top event block refers to at least k-neighbor of other nodes.

3.6. Topological ordering of events using Lamport timestamps

Every node has a physical clock and it needs physical time to create an
event block. However, for consensus, Lachesis protocols relies on a logical
clock for each node. For the purpose, we use "Lamport timestamps” [11]
to determine the time ordering between event blocks in a asynchronous dis-
tributed system.

The Lamport timestamps algorithm is as follows:

1. Each node increments its count value before creating an event block.

2. When sending a message include its count value, receiver should con-
sider which sender’s message is received and increments its count value.

3. If current counter is less than or equal to the received count value from
another node, then the count value of the recipient is updated.

4. If current counter is greater than the received count value from another
node, then the current count value is updated.

We use the Lamport’s algorithm to enforce a topological ordering of event
blocks and uses it in Atropos selection algorithm.

Since an event block is created based on logical time, the sequence be-
tween each event blocks is immediately determined. Because the Lamport
timestamps algorithm gives a partial order of all events, the whole time or-
dering process can be used for Byzantine fault tolerance.
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Figure 5: An example of Lamport timestamps

3.7. Topological consensus ordering

The sequential order of each event block is an important aspect for Byzan-
tine fault tolerance. In order to determine the pre-and-post sequence between
all event blocks, we use Atropos consensus time, Lamport timestamp algo-
rithm and the hash value of the event block.

First, when each node creates event blocks, they have a logical times-
tamp based on Lamport timestamp. This means that they have a partial
ordering between the relevant event blocks. Each Clotho has consensus time
to the Atropos. This consensus time is computed based on the logical time
nominated from other nodes at the time of the 2n/3 agreement.

In the LCA, each event block is based on the following three rules to
reach an agreement:

1. If there are more than one Atropos with different times on the same
frame, the event block with smaller consensus time has higher priority.

2. If there are more than one Atropos having any of the same consensus
time on the same frame, determine the order based on the own logical
time from Lamport timestamp.
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Topological consensus ordering

1. Smaller consensus time of Atropos, prior ordering.
2. if same consensus time, smaller Lamport timestamp, prior ordering.

3. if same consensus time and same Lamport timestamp, smaller hash value, prior ordering.

o We assume that Atropos are e and e
1. If consensus time of o < consensus time of o

e has a prior ordering

2. If consensus time of a = consensus time of e
@ and if Lamport time of a < Lamport time of g

G has a prior ordering

3. If consensus time of e = consensus time of e
and if Lamport time of e = Lamport time of 6

i and if hash value of ° < hash value of e

e has a prior ordering

Figure 6: An example of topological consensus ordering

3. When there are more than one Atropos having the same consensus

time, if the local logical time is same, a smaller hash value is given
priority through hash function.

Figure 6 depicts an example of topological consensus ordering.

Figure 7 shows the part of OPERA chain in which the final consensus
order is determined based on these 3 rules. The number represented by each
event block is a logical time based on Lamport timestamp.
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Figure 7: An Example of time ordering of event blocks in OPERA chain

Final topological consensus order containing the event blocks based on
agreement for the apropos. Based on each Atropos, they will have different
colors depending on their range.

3.8. Peer selection algorithm

In order to create an event block, a node needs to select k other nodes.
Lachesis protocols does not depend on how peer nodes are selected. One
simple approach can use a random selection from the pool of n nodes. The
other approach is to define some criteria or cost function to select other peers
of a node.

Within distributed system, a node can select other nodes with low com-
munication costs, low network latency, high bandwidth, high successful trans-
action throughputs.

4. Lachesis Consensus Protocol L

This section presents our new Lachesis Consensus Protocol Ly, which is
a specific example of the Lachesis class. We describe the main ideas and
algorithms used in the protocol.



4.1. Root Selection

All nodes can create event blocks and an event block can be a root when
satisfying specific conditions. Not all event blocks can be roots. First, the
first created event blocks are themselves roots. These leaf event blocks form
the first root set Rg;. If there are total n nodes and these nodes create the
event blocks, then the cardinality of the first root set |Rg;| is n. Second, if
an event block e can reach at least 2n/3 roots, then e is called a root. This
event e does not belong to Rgy, but the next root set Rgo. Thus, excluding
the first root set, the range of cardinality of root set Rgy is 2n/3 < |Rgsi| < n.
The event blocks including Rgj before Rgiiq is in the frame fi. The roots
in Rggy1 does not belong to the frame f;. Those are included in the frame
fr + 1 when a root belonging to Rgj2 occurs.

We introduce the use of a flag table to quickly determine whether a new
event block becomes a root or not. Each node maintains a flag table of the
top event block. Every event block that is newly created is assigned k hashes
for its k parent event blocks. We apply an OR operation on the flag tables
of the parent event blocks.

Figure 8 shows an example of how to use flag tables to determine a root.
In this example, r; is the most recently created event block. We apply an
OR operation on the flag tables of r;’s k£ parent event blocks. The result is
the flag table of ri. If r’s flag table has more than 2n/3 set bits, r is a
root. In this example, the number of set bits is 4, which is greater than 2n/3
(n=>5). Thus, r; becomes root.

The root selection algorithm is as follows:

1. The first event blocks are considered as root.

2. When a new event block is added in the OPERA chain, we check
whether the event block is a root by applying OR operation on the
flag tables connected to the new event block. If the sum of the flag
table for the new event block is more than 2n/3, the new event block
becomes a root.

3. When a new root appears on the OPERA chain, nodes update their
root hash list. If one of new event blocks becomes a root, all nodes
that share the new event block add the hash value of the event block
to their root hash list.

4. The new root set is created if the cardinality of previous root set Rg,
is more than 2n/3 and the new event block can reach 2n/3 root in Rg,.

22



Flag table information

1 1 1 0 0

Root set (R)
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Flag table information

1 1 1 1 0

Flag table information
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Flag table information

0 1 1 1 0

Figure 8: An Example of Flag Table Calculation

5. When the new root set Rg, , is created, the event blocks from previous
root set Rg, to before Rg, , belong to the frame f;.

4.2. Clotho Selection

A Clotho is a root that satisfies the Clotho creation conditions. Clotho
creation conditions are that more than 2n/3 nodes know the root and a root
knows this information.

Figure 9 shows an example of Clotho. Circles with a label r; (or c)
represents a root (or Clotho) event block. If there are three other sets of root
and there exists one root after the recent clotho set, then one of the roots in
the first root set become Clotho.

Clotho selection algorithm checks whether root event blocks in the root
hash list satisfy the Clotho condition. If a root satisfies Clotho condition,
the root becomes Clotho and makes a candidate time for Atropos. After the
root is concluded as a Clotho, Atropos consensus time selection algorithm is
triggered.

For a root r, we denote frame(i,r) to be the root r in i-th frame. For
example, frame(1,r) is the first root belong to the frame f.
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Algorithm 2 shows the pseudo code for Clotho selection. The algorithm
takes a root r as input. Line 4 and 5 set c.is_clotho and c.yes to nil and 0
respectively. Line 6-8 checks whether any root ¢ in frame(i — 3,r) shares ¢
where ¢ is the current frame. In line 9-10, if number of roots in frame(i—2,r)
which shares ¢ is more than 2n/3, the root c is set as a Clotho. The time
complexity of Algorithm 3 is O(n?), where n is the number of nodes.

4.3. Atropos Selection

Atropos selection algorithm is the process in which the candidate time
generated from Clotho selection is shared with other nodes, and each root
re-selects candidate time repeatedly until all nodes have same candidate time
for a Clotho.

After a Clotho is nominated, each node then computes candidate time
of the Clotho. If there are more than two-thirds of the nodes that compute
the same value for candidate time, that time value is recorded. Otherwise,
each node reselects candidate time from some candidate time which the node
collects. By the reselection process, each node reaches time consensus for can-
didate time of Clotho as OPERA chain grows. The candidate time reaching
the consensus is called Atropos consensus time. After Atropos consensus
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Algorithm 2 Clotho Selection
1: procedure CLOTHO SELECTION
2 Input: a root r

3 for ¢ € frame(i — 3,r) do

4 c.is_clotho < nil

5: cyes < 0
6

7
8

9

for ¢ € frame(i —2,7) do
if ¢ share ¢ then
c.yes < c.yes + 1
if c.yes > 2n/3 then
10: c.is_clotho < yes

time is computed, Clotho is nominated to Atropos and each node stores
the hash value of Atropos and Atropos consensus time in Main-Chain. The
Main-chain is used for time order between event blocks. The proof of Atropos
consensus time selection is shown in the section 7.1.
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Algorithm 3 Atropos Consensus Time Selection
1: procedure ATROPOS CONSENSUS TIME SELECTION
2 Input: c.Clotho in frame f;

3 c.consensus_time < nil

4: m < the index of the last frame f,,

5: for d in [3..m] do
6

7

8

9

R < be the Root set Rg,, , in frame f; 4
for r € R do
if d is 3 then
if r confirms ¢ as Clotho then

10: r.time(c) < r.lamport_time

11: else if d > 3 then

12: s < the set of Root in f;_; that r can share
13: t <+ RESELECTION(s, ¢)

14: k < the number of root having t in s
15: if d mod h > 0 then

16: if £ > 2n/3 then

17: c.consensus_time <t

18: r.time(c) < t

19: else

20: r.time(c) <t

21: else

22: r.time(c) < the minimum value in s

Algorithm 3 and 4 show pseudo code of Atropos consensus time selection
and Consensus time reselection. In Algorithm 3, at line 5, d denotes the
deference of relationship between root set of ¢ and r. Thus, line 7 means
that r is one of the elements in root set of the frame f;,3, where the frame f;
includes c. Line 10, each root in the frame f; selects own Lamport timestamp
as candidate time of ¢ when they confirm root ¢ as Cltoho. In line 12, 13,
and 14, s, t, and k save the set of root that r can share ¢, the result of
RESELECTION function, and the number of root in s having ¢. Line
15 is checking whether there is a difference as much as h between ¢ and
J where h is a constant value for minimum selection frame. Line 16-20 is
checking whether more than two-thirds of root in the frame f;_; nominate
the same candidate time. If two-thirds of root in the frame f;_; nominate
the same candidate time, the root c is assigned consensus time as t. Line 22
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is minimum selection frame. In minimum selection frame, minimum value
of candidate time is selected to reach byzantine agreement. Algorithm 4
operates in the middle of Algorithm 3. In Algorithm 4, input is a root set R
and output is a reselected candidate time. Line 4-5 computes the frequencies
of each candidate time from all the roots in R. In line 6-11, a candidate time
which is smallest time that is the most nomitated. The time complexity of
Algorithm 4 is O(n) where n is the number of nodes. Since Algorithm 3
includes Algorithm 4, the time complexity of Algorithm 3 is O(n?) where n
is the number of nodes.

Algorithm 4 Consensus Time Reselection
1: function RESELECTION
2 Input: Root set R, and Clotho ¢
3 Output: candidate time ¢
4: T < set of all t; = r.time(c) for all r in R
5: D <« set of tuples (t;, ¢;) computed from 7, where ¢; = count(t;)
6
7
8
9

max_count < maz(c;)
t < infinite
for tuple (¢;,¢;) € D do
: if max_count == ¢; && t; < t then
10: t <t
11: return ¢

In the Atropos Consensus Time Selection algorithm, nodes reach con-
sensus agreement about candidate time of a Clotho without additional com-
munication (i.e., exchanging candidate time) with each other. Each node
communicates with each other through the Lachesis protocol, the OPERA
chain of all nodes grows up into same shape. This allows each node to know
the candidate time of other nodes based on its OPERA chain and reach a
consensus agreement. The proof that the agreement based on OPERA chain
become agreement in action is shown in the section 7.1.

4.4. Peer selection algorithm via Cost function

We define three versions of the Cost Function (Cr). Version one is focused
around updated information share and is discussed below. The other two
versions are focused on root creation and consensus facilitation, these will be
discussed in a following paper.

27



Cost Function: Cp=1I/H Cost Function: Cr=1I/H
* Signature Stamp Leaf events * Signature Stamp Node A Leaf events
X ode
Node 4 )
4 @
* Height Vector \@ * Height Vector
A B C D E A B C D E 2
1 1 1 1 1 B . 1 1 1 i 1 1
* In-degree Vector * In-degree Vect r
A B C D E c . A B C D E c
0 0 0 0 0 0 0 0 0
» @ —» @
Cr(B)=0 Cr(C)=0 Cp(D)=0 Cp(E)=0
E @ E @
Step 1 Step 2

Figure 10: An Example of Cost Function 1

We define a Cost Function (Cr) for preventing the creation of lazy nodes.
The lazy node is a node that has a lower work portion in the OPERA chain.
When a node creates an event block, the node selects other nodes with low
values outputs from the cost function and refers to the top event blocks of
the reference nodes. An equation (1) of CF is as follows,

Cp=1/H (1)

where [ and H denote values of in-degree vector and height vector re-
spectively. If the number of nodes with the lowest Cr is more than k, one
of the nodes is selected at random. The reason for selecting high H is that
we can expect a high possibility to create a root because the high H indi-
cates that the communication frequency of the node had more opportunities
than others with low H. Otherwise, the nodes that have high Cr (the case
of I > H) have generated fewer event blocks than the nodes that have low
Cp. Then we can judge that those kind of nodes are lazy. If we can detect
whether a node is lazy based on cost function, we can change the lazy nodes
to other participants or remove them.

Figure 10 shows an example of the node selection based on the cost func-
tion after the creation of leaf events by all nodes. In this example, there
are five nodes and each node created leaf events. All nodes know other leaf
events. Node A creates an event block v; and A calculates the cost functions.
Step 2 in Figure 10 shows the results of cost functions based on the height
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and in-degree vectors of node A. In the initial step, each value in the vectors
are same because all nodes have only leaf events. Node A randomly selects k
nodes and connects v; to the leaf events of selected nodes. In this example,
we set k=3 and assume that node A selects node B and C.

Figure 11 shows an example of the node selection after a few steps of the
simulation in Figure 10. In Figure 11, the recent event block is v5 created by
node A. Node A calculates the cost function and selects the other two nodes
that have the lowest results of the cost function. In this example, node B
has 0.5 as the result and other nodes have the same values. Because of this,
node A first selects node B and randomly selects other nodes among nodes
C, D, and F.

The height of node D in the current OPERA chain of the example is 2
(leaf event and event block v,). On the other hand, the height of node D
in node structure of A is 1. Node A is still not aware of the presence of the
event block vy. It means that there is no path from the event blocks created
by node A to the event block vy. Thus, node A has 1 as the height of node
D.

Algorithm 5 shows the selecting algorithm for selecting reference nodes.
The algorithm operates for each node to select a communication partner
from other nodes. Line 4 and 5 set min_cost and S,.s to initial state. Line
7 calculates the cost function ¢y for each node. In line 8, 9, and 10, we find
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the minimum value of the cost function and set min_cost and S,.¢ to ¢; and
the ID of each node respectively. Line 11 and 12 append the ID of each node
to Syep if min_cost equals cy. Finally, line 13 selects randomly k node IDs
from S,.; as communication partners. The time complexity of Algorithm 2
is O(n), where n is the number of nodes.

Algorithm 5 k-neighbor Node Selection
1: procedure k-NODE SELECTION

2 Input: Height Vector H, In-degree Vector [
3 Output: reference node ref

4 min_cost <~ INF

5: Sref <— None
6

7
8

9

for k € Node_Set do
I
Cy <— H_];
if min_cost > ¢ then
min_cost < ¢

10: Sref k

11: else if min_cost equal cy then
12: Sref < Spef U k

13: ref < random select in s,.r

After the reference node is selected, each node communicates and shares
information that is all event blocks known by them. A node creates an event
block by referring to the top event block of the reference node. The Lachesis
protocol works and communicates asynchronously. This allows a node to
create an event block asynchronously even when another node creates an
event block. The communication between nodes does not allow simultaneous
communication with the same node.

Figure 12 shows an example of the node selection in Lachesis protocol.
In this example, there are five nodes (A, B,C, D, and FE) and each node
generates the first event blocks, called leaf events. All nodes share other leaf
events with each other. In the first step, node A generates new event block
vy (blue). Then node A calculates the cost function to connect other nodes.
In this initial situation, all nodes have one event block called leaf event, thus
the height vector and the in-degree vector in node A has same values. In
other words, the heights of each node are 1 and in-degrees are 0. Because
of this reason, node A randomly select other two nodes and connect v; to
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Figure 12: An Example of Node Selection

the top two event blocks by other two nodes. The step 2 shows the situation
after connections. In this example, node A select node B and C' to connect
v1 and the event block v; is connected to the top event blocks of node B and
C. Node A only knows the situation of the step 2.

After that, in the example, node B generates new event block vy (green)
and also calculates the cost function. B randomly select the other two nodes;
A, and D, since B only has information of the leaf events. Node B requests
to A and D to connect eg, then nodes A and D send information for their
top event blocks to node B as response. The top event block of node A is vy
and node D is the leaf event. The event block v, is connected to v; and leaf
event from node D. Step 4 shows these connections.

5. Discussions

This section presents several discussions on our Lachesis protocol.

5.1. Lamport timestamps

This section discusses a topological order of event blocks in DAG-based
Lachesis protocols using Lamport timestamps [11].

Our Lachesis protocols relies on Lamport timestamps to define a topo-
logical ordering of event blocks in OPERA chain. The “happened before”
relation, denoted by —, gives a partial ordering of events from a distributed
system of nodes.

Given n nodes, they are represented by n processes P = (Py, Py, ..., P,_1).

31



For a pair of event blocks b and ¥/, the relation ”—” satisfies: (1) If b and
b’ are events of process P;, and b comes before ¥/, then b — . (2) If b is
the send(m) by one process and b’ is the receive(m) by another process, then
b—U. (3)Ifb— b and ¥ — V" then b — b”. Two distinct events b and v/
are said to be concurrent if b - o' and b’ - b.

For an arbitrary total ordering < of the processes, a relation = is defined
as follows: if b is an event in process P; and ' is an event in process P},
then b = ¥ if and only if either (i) Ci(a) < C;(b) or (ii) C'(b) = C;(b') and
P; < P;. This defines a total ordering, and that the Clock Condition implies
that if @ — b then a = 0.

We use this total ordering in our Lachesis algorithms. By using Lamport
timestamps, we do not rely on physical locks to determine a partial ordering
of events.

5.2. Semantics of Lachesis protocols

This section discusses the possible usage of concurrent common knowl-
edge, described in Section 2.2 to understand DAG-based consensus protocols.

Let G = (V, E) denote directed acyclic graph (DAG). V' is a set of vertices
and F is a set of edges. DAG is a directed graph with no cycle. Namely, in
DAG, there is no path that source and destination at the same vertex. A
path is a sequence of vertices (vq, va, ..., V1), vk) that uses no edge more
than once.

An asynchronous system consists of the following sets.

1. A set P = {1,...,n} of process identifiers, where n is the total number
of processes P; in the system.

2. Aset C C {(i,j) s.t. i,j € P} of channels. If (7,7) in C, it indicates
that process i can send messages to process j.

3. A set H; of possible local histories for each process i in P.

4. A set A of asynchronous runs. Each asynchronous run is a vector of
local histories, denoted by a = (hq, hg, hs,...~hyx). Each process has a
single run. Histories are indexed by process identifiers.

5. A set M of messages. A message is a triple (7,7, B) where i € P is
the sender of the message, 7 € is the message recipient, and B is the
message body.

In Lachesis protocol, each node selects k other nodes as peers. For certain
gossip protocol, nodes may be constrained to gossip with its k& peers. In such
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a case, the set of channels C' can be modelled as follows. If node ¢ selects
node j as a peer, then (7,7) € C. In general, one can express the history of
each node in Lachesis protocol in the same manner as in the CCK paper [20].
Thus, a proof of consensus can be formalized via the consistent cuts.

6. Conclusion

In order to realize the distributed ledger technology, we have proposed a
new family of asynchronous DAG-based consensus protocol, namely £. We
introduce the OPERA chain and Main-chain for faster consensus. By using
Lamport timestamps, the topological ordering of event blocks in OPERA
chain and Main chain is more intuitive and reliable in distributed system.
We introduce a flag table at each block to improve root detection.

Further, we have presented a specific Lachesis consensus protocol, called
Ly, as an example of £. The Ly protocol uses a new flag table in each block
as a shortcut to check for reachability from an event block to a root along
the OPERA chain. The path search is used as a proof of pBFT consensus.
In terms of effectiveness, using flag table in Ly protocol is more effective
for consensus compared to the path searching approaches. To ensure the
distribution of participating nodes, the Lachesis protocol defines a new cost
function and an algorithm that efficiently and quickly selects peers. We also
propose new algorithms for root selection and Clotho block selection based on
the flag table; for Atropos selection by Weight after time consensus ordering.

Based on the Lg protocol and the new consensus algorithm, the OPERA
chain can protect against malicious attacks such as forks, double spending,
parasite chains, and network control. These protections guarantee the safety
of OPERA chain. We can also verify existence of Atropos with the OPERA
chain. It concludes that the OPERA chain reaches consensus and guarantees
liveliness. Finally, the time ordering ensures guarantee by weight value on the
flag table. Based on these properties, the LCA provides a fair, transparent,
and effective consensus algorithm.

6.1. Future work

There are a number of directions for future work:
e With the Lachesis protocols, we are investigating a fast node synchro-

nization algorithm with k-neighbor broadcasts. With OPERA chain
and k peer selection, it is possible to achieve a faster gossip broadcast.
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We are interested in comparing performance of different gossip strate-
gies, such as randomized gossip, broadcast gossip and collection tree
protocol for distributed averaging in wireless sensor networks.

e We are also investigating the semantics of DAG-based protocols in gen-
eral and Lachesis protocols in particular. We aim to have a formal proof
of pBFT using concurrent common knowledge via consistent cuts.
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7. Appendix
7.1. Proof of Lachesis Consensus Algorithm

In this section, we provide proof of liveness and safety in OPERA chain
and show the Byzantine fault tolerance. To represent the Byzantine fault
tolerance, we assume that more than two-thirds of participants are reliable
nodes. Based on the assumption, we provide some definitions, lemmas and
theorems. Then, we eventually validate the Byzantine fault tolerance.

7.1.1. Preliminaries

Let G = (V, E) denote directed acyclic graph (DAG). V' is a set of vertices
and F is a set of edges. DAG is a directed graph with no cycle. Namely, in
DAG, there is no path that source and destination at the same vertex. A
path is a sequence P of vertices (v, v, ..., V1), Ux) that uses no edge more
than once. Suppose that we have a current vertex v, and current event block
e respectively. A vertex v, is parent of v, if there is a path from v, to v, and
the length of path is 1. A vertex v, is ancestor of v, if there is a path from
v, to v, and the length of path is more than equal to 1.

7.1.2. Proof of Byzantine Fault Tolerance for Lachesis Consensus Algorithm
Definition 7.1 (node). The machine that participates in the OPERA chain
and creates event blocks. The total number of nodes is n.

Definition 7.2 (event block). In OPERA chain, we call a vertez an event
block.

Definition 7.3 (self parent). An event block ey is self parent of an event
block e, if es is parent of e. and both event blocks have same signatures.

Definition 7.4 (self ancestor). An event block e, is self ancestor of an event
block e. if e, 1s ancestor of e. and both event blocks have same signatures.

Definition 7.5 (Happened-Before). An event block e, Happened-Before an
event block e, if there is a path from e, to e,.

Definition 7.6 (Root). The first created event blocks (leaf events) become
root or an event block e that can reach more than 2n/3 other roots, becomes
a To0t.
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Definition 7.7 (Root set). All first event blocks (leaf events) are elements
of root set Ry (|Ry| = n). And the root set Ry, is a set of roots such that r;
€ Ry cannot reach more than 2n/3 other roots in Ry (k> 1).

Definition 7.8 (Frame). Frame f is a natural number that separates Root
sets.

Definition 7.9 (Clotho). A root 1y, in the frame f,.3 can nominate a root
rq as Clotho if more than 2n/3 roots in the frame f,+1 Happened-Before r,
and r, Happened-Before the roots in the frame f,1.

Definition 7.10 (Atropos). If the consensus time of Clotho is validated, the
Clotho become Atropos.

Proposition 7.1. At least 2n/3 roots in the frame f; Happened-Before at
least 2n/83 roots in the frame fiy1.

Proof. The number of roots in each root set is more than 2n/3. Since a root
in the frame f;;; Happened-Before more than 2n/3 roots in the frame f;,
when the cardinalities of the root sets in the frames f; and f;;; are n and
2n/3 respectively, the number of paths from root set in the frame f;1 to root
set in the frame f; is at least (2n/3)?. The average and the maximum of the
number of paths from root set in the frame f;,; to an root in the frame f;
are (4n/9) and (2n/3) respectively. Thus, at least 2n/3 roots in the frame f;
Happened-Before at least n/3 root in the frame f;,. O

Proposition 7.2. If a root in the frame f; Happened-Before from more than
n/3 roots in the frame f; 1, the root Happened-Before all roots in the frame

f'i+2-

Proof. Based on the definition of Root, each root can reach more than 2n/3
other roots in the previous frame. It means that a root in the frame f; o
should have a number of paths more than 2n/3 to roots in the frame f;,;.
Thus, if a root r in the frame f; Happened-Before more than n/3 roots in
the frame f;;1, all roots in the frame f; o have path to the root r. O

Lemma 7.3 (Sharing). If a root r, in the frame f,.3 is created, the root
in the frame f,3 knows that more than 2n/3 roots in the frame f, become
known by more than 2n/3 nodes.
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Proof. Based on propositions 7.1 and 7.2, the root in the frame f,,3 knows
that more than 2n/3 roots in the frame f, become known by more than 2n/3
nodes. O

Lemma 7.4 (Fork). If the pair of event blocks (x,y) is a fork, roots happened-
before at least one fork in OPERA chain. Therefore, they can know fork
before becoming Clotho.

Proof. Suppose that a node creates two event blocks (x,y) and the event
blocks are a fork. To create two Clotho that can reach each event block in the
pair, the event blocks should be shared in more than 2n/3 nodes. Therefore,
if there exist fork event blocks, the OPERA chain can structurally detect the
fork before roots become Clotho. O

Theorem 7.5. All node grows up into same shape in OPERA chain.

Proof. Suppose that each node A and B will have a different shape (or a
structure). For any two nodes A and B, there is two event blocks x and y
which are in both OPERA(A) and OPERA(B). Also, their path between «
and y in OPERA(A) is not equal to that in OPERA(B). For any two event
blocks, if each node has different paths, we can consider that the difference
is fork attacks. Based on Lemma 7.4, if an attacker forks an event block,
the OPERA chain can detect and remove it before the Clotho is generated.
It contradicts our assumptions. For this reason, two nodes have consistent
OPERA chain. O

Lemma 7.6. For any root set R, all nodes nominate same root into Clotho.

Proof. Based on Theorem 7.5, each node nominates a root into Clotho via
the flag table. If all nodes have an OPERA chain with same shape, the values
in flag table should be equal to each other in OPERA chain. Thus, all nodes
nominate the same root into Clotho since the OPERA chain of all nodes has
same shape. O

Lemma 7.7. In the Reselection algorithm, for any Clotho, a root in OPERA
chain selects the same consensus time candidate.

Proof. Based on Theorem 7.5, if all nodes have an OPERA chain with the
same partial shape, a root in OPERA chain selects the same consensus time
candidate by the Reselection algorithm. O
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Theorem 7.8. Lachesis consensus algorithm guarantees to reach agreement
for the consensus time.

Proof. For any root set R in the frame f;, time consensus algorithm checks
whether more than 2n/3 roots in the frame f;_; selects the same value. How-
ever, each node selects one of the values collected from the root set in the
previous frame by the time consensus algorithm and Reselection process.
Based on the Reselection process, the time consensus algorithm can reach
agreement. However, there is a possibility that consensus time candidate
does not reach agreement [7]. To solve this problem, time consensus algo-
rithm includes minimal selection frame per next h frame. In minimal value
selection algorithm, each root selects minimum value among values collected
from previous root set. Thus, the consensus time reaches consensus by time
consensus algorithm. O]

Theorem 7.9. If the number of reliable nodes is more than 2n/3, event
blocks created by reliable nodes must be assigned to consensus order.

Proof. In OPERA chain, since reliable nodes try to create event blocks by
communicating with every other nodes continuously, reliable nodes will share
the event block x with each other. Based on Proposition 7.1, if a root y in
the frame f; Happened-Before event block = and more than 2n/3 roots in
the frame f;,; Happened-Before the root y, the root y will be nominated
as Clotho and Atropos. Thus, event block z and root y will be assigned
consensus time ¢.

For an event block, assigning consensus time means that the validated
event block is shared by more than 2n/3 nodes. Therefore, malicious node
cannot try to attack after the event blocks are assigned consensus time. When
the event block x has consensus time ¢, it cannot occur to discover new event
blocks with earlier consensus time than ¢. There are two conditions to be
assigned consensus time earlier than ¢ for new event blocks. First, a root r
in the frame f; should be able to share new event blocks. Second, the more
than 2n/3 roots in the frame f;,; should be able to share r. Even if the first
condition is satisfied by malicious nodes (e.g., parasite chain), the second
condition cannot be satisfied since at least 2n/3 roots in the frame f;;; are
already created and cannot be changed. Therefore, after an event block is
validated, new event blocks should not be participate earlier consensus time

to OPERA chain. O
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7.2. Response to Attacks

Like all other decentralized blockchain technologies, OPERA chain will
likely be subject to attacks by attackers which aim to gain financial profit to
damage the system. Here we describe several possible attack scenarios and
how the OPERA chain intends to take preventive measures.

7.2.1. Transaction Flooding

A malicious participant may run a large number of valid transactions
from their account under their control with the purpose of overloading the
network. In order to prevent such a case, the chain intends to impose a
minimal transaction fee. Since there is a transaction fee, the malicious user
cannot continue to perform such attacks. Participants who participate in
nodes are rewarded, and those who contribute to the ecosystem, such as by
running transactions, are continuously rewarded. Such rewards are expected
to be adequate in running transactions for appropriate purposes. However,
since it would require tremendous cost to perform abnormal attacks, it would
be difficult for a malicious attacker to create transaction flooding.

7.2.2. Parasite chain attack

In a DAG-based protocol, a parasite chain can be made with a malicious
purpose, attempting connection by making it look like a legitimate event
block. When the Main Chain is created, verification for each event block is
performed. In the verification process, any event block that is not connected
to the Main Chain is deemed to be invalid and is ignored, as in the case of
double spending.

We suppose that less than one-third of nodes are malicious. The malicious
nodes create a parasite chain. By the root definition, roots are nominated by
2n/3 node awareness. A parasite chain is only shared with malicious nodes
that are less than one-third of participating nodes. A parasite chain is unable
to generate roots and have a shared consensus time.

7.2.3. Double Spending

A double spend attack is when a malicious entity attempts to spend their
funds twice. Entity A has 10 tokens, they send 10 tokens to B via node n4
and 10 tokens to C' via node nyz. Both node n4 and node ny agree that the
transaction is valid, since A has the funds to send to B (according to n,)
and C' (according to nyz).
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Consensus is a mechanism whereby multiple distributed parties can reach
agreement on the order and state of a sequence of events. Let’s consider the
following 3 transactions:

tza: A (starting balance of 10) transfers 10 to B

trp: B (starting balance of 0) transfers 10 to C'

tre: C (starting balance of 0) transfers 10 to D

We consider Node n4 received the order tx4 txg txc

The state of Node ng is A:0, B:0,C :0, D : 10

Now, we consider Node ng that receives the order tx¢ tarpg tx

The state of Node ngis A: 0, B:10,C :0, D :0

Consensus ordering gives us a sequence of events.

If the pair of event blocks (z,y) has a double spending transaction, the
chain can structurally detect the double spend and delay action for the event
blocks until the event blocks assign time ordering.

Suppose that the pair of event blocks (z,y) has same frame f;. Then,
all nodes must detect two event blocks before frame f + 2. By the root
definition, each root happened-before more than 2n/3 previous roots. For
this reason, when two roots in f + 1 are selected, they must have happened-
before the roots which are more than one-thirds of roots in f. This means
that more than 2n/3 roots in f + 1 share both two roots which include the
pair respectively. With the root definition and previous explanation, all roots
in f + 2 share both the pairs. Thus, all nodes detect the double spending
event blocks at f + 2 or earlier.

7.2.4. Long-range attack

In blockchains an adversary can create another chain. If this chain is
longer than the original, the network will accept the longer chain. This mech-
anism exists to identify which chain has had more work (or stake) involved
in its creation.

2n/3 participating nodes are required to create a new chain. To accom-
plish a long-range attack you would first need to create > 2n/3 participating
malicious nodes to create the new chain.

7.2.5. Bribery attack

An adversary could bribe nodes to validate conflicting transactions. Since
2n/3 participating nodes are required, this would require the adversary to
bribe > 1n/3 of all nodes to begin a bribery attack.
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7.2.6. Denial of Service
LCA is a leaderless system requiring 2n/3 participation. An adversary
would have to deny > 1n/3 participants to be able to successfully mount a

DDoS attack.

7.2.7. Sybil
Each participating node must stake a minimum amount of FTM to par-
ticipate in the network. Being able to stake 2n/3 total stake would be pro-

hibitively expensive.
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