
Nervos CKB: A Common Knowledge

Base for Crypto-Economy

2019.02.26

Copyright © 2019 Nervos Foundation

Abstract

Nervos is a layered crypto-economy network. Nervos separates the

infrastructure of a crypto-economy into two layers: a verification

layer (layer 1) that serves as a trust root and smart custodian, and a

generation layer (layer 2) for high-performance transactions and

privacy protection.

This document provides an overview of the Nervos Common

Knowledge Base (CKB), a public permissionless blockchain and

layer 1 of Nervos. CKB generates trust and extends this trust to

upper layers, making Nervos a trust network. It's also the value store

of the Nervos network, providing public, secure and censorship-

resistant custody services for assets, identities and other common

knowledge created in the network.

Contents

1. Motivation

2. Overview

3. Consensus

4. Programming Model

i. State Generation and Verification

ii. Cell

iii. VM

iv. Transaction

5. Economic Model

6. Network

7. Summary

8. References

9. Appendix

10. Connect Nervos

1

1. Motivation

We want a peer-to-peer crypto-economy network.

In such a network, people can not only collaborate but also have

incentives to do so. We need the ability to define, issue, transfer, and

own assets in a peer-to-peer network to create such incentives.

Blockchain technology brings us the last piece of the puzzle.

Bitcoin[1] was the first public permissionless blockchain, designed

to be used solely as peer-to-peer cash. Ethereum[2] extends the use

case of blockchain to create a general purpose trust computing

platform on which people have built all kinds of decentralized

applications. The booming applications on the Bitcoin and

Ethereum networks have proven the concept of the future crypto-

economy. However, these networks also suffer from the notorious

scalability problem, their transaction processing capability cannot

scale with the number of participants in the network, which severely

limits their potential.

2

The blockchain community has proposed many scalability solutions

in recent years. In general, we can divide these solutions into two

categories, on-chain scaling and off-chain scaling. On-chain scaling

solutions are those that try to scale at the same layer where

consensus runs. The consensus process is the core of a blockchain

protocol, in which nodes exchange network messages and reach

agreement eventually. A consensus is slow almost by definition,

because message exchange on a public and open network is slow

and uncertain, nodes must wait and retry to reach agreement in the

consensus process. To scale at this layer, we can either "scale up"

by increasing the processing ability and network bandwidth of

nodes (but sacrifice decentralization due to high hardware and

infrastructure costs), or "scale out" by sharding. The idea of

sharding is to divide nodes into many small "shards", and ask each

shard to process only a fraction of network transactions. Sharding

is widely adopted by Internet giants, as they face the same

scalability issues when serving millions of users. However, sharding

is well known for the complexity of shard coordination and cross-

shard transactions, which even in a trusted environment, leads to

performance degradation as the number of shards grows.

3

In contrast, off-chain scaling solutions acknowledge the inherent

complexity of the consensus process. They recognize that

consensus within different scopes incur different costs, and the

global consensus created by a public permissionless blockchain is

the most expensive consensus. While it is hard to scale a global

consensus, we can use it wisely. Most transactions between two or

more parties don't need to be known by every node in the network,

except when they are securely settled; in other words, when users

want to turn their transactions into common knowledge of the

network. This network scales by offloading most of the work to

upper layers, with no limit on scalability. Processing transactions

off-chain also brings additional benefits, such as lower latency and

higher privacy.

While we agree with the general ideas of off-chain scaling, we have

found that there is no existing blockchain designed for it. For

example, though the lightning network is one of the earliest

explorations in off-chain scaling, it has taken years to launch its

testnet and is still far from mass-adoption due to the limitations of

the underlying Bitcoin protocol. Ethereum provides powerful

programming ability, but its computation-oriented economic model

doesn't fit well with off-chain scaling. Because off-chain

4

participants handle most of the computation, what is required is a

blockchain that can keep their assets in secure custody and move

assets according to the final state of their computation. The

computation-oriented design of Ethereum also makes it difficult to

execute transactions in parallel, which is an impediment to

scalability.

The economic models of current blockchains also face challenges.

With more users and applications moving to blockchain platforms,

the amount of data stored on blockchains also increases. Current

blockchain solutions are concerned more with the cost of

consensus and computation, and allow a user to pay once and have

their data occupy full nodes’ storage forever. Cryptocurrency prices

also are highly volatile, and users may find it difficult to pay high

transaction fees as the price of a cryptocurrency increases.

We propose Nervos CKB, a public permissionless blockchain

designed for a layered crypto-economy network.

5

2. Overview

Nervos CKB (Common Knowledge Base) is a layer 1 blockchain, a

decentralized and secure layer that provides common knowledge

custody for the network. Common knowledge refers to states that

are verified by global consensus. Crypto-assets are an example of

common knowledge.

In Nervos, the CKB and all layer 2 protocols work together to serve

the crypto-economy. CKB (or layer 1) is where state is stored and

defined, and layer 2 is the generation layer (or computation layer,

these two terms are interchangeable) that processes most

transactions and generates new states. Layer 2 participants submit

newly generated states to the CKB eventually at the time they deem

necessary. If those states pass the corresponding verification

performed by nodes in a global network, the CKB stores them in a

peer-to-peer node securely.

The layered architecture separates state and computation,

providing each layer more flexibility and scalability. For example,

blockchains on the generation layer (layer 2) may use different

6

consensus algorithms. CKB is the lowest layer with the broadest

consensus and provides the most secure consensus in the Nervos

network. However, different applications might prefer different

consensus scopes and forcing all applications to use CKB’s

consensus would be inefficient. Applications can choose the

appropriate generation methods based on their particular needs.

The only time these applications will need to submit states to CKB

for broader agreement is when they need to make these states

common knowledge that has been verified by the CKB's global

consensus.

Possible state generation methods include (but are not limited to)

the following:

• Local generators on the client: Generators run directly on the

client’s devices. Developers can implement the generator in

any programming language.

• Web services: Users may use traditional web services to

generate new states. All current web services may work with

CKB in this way to gain more trust and liquidity for the

generated states. For example, game companies may define

in-game items as assets in CKB, the game itself functions as

7

a web service that generates game data, which is then verified

and stored in CKB.

• State channels: Two or more users may use peer-to-peer

communication to generate new states.

• Generation chains: A generation chain is a blockchain that

generates new states and stores them in CKB. Generation

chains may be permissionless blockchains or permissioned

blockchains. In each generation chain, nodes reach

consensus in smaller scopes, providing better privacy and

performance.

Figure 1. Layered Architecture

CKB consists of a Proof-of-Work based consensus, a RISC-V

instruction set based virtual machine, a state model based on cells,

https://github.com/stwith/rfcs/blob/master/rfcs/0002-ckb/images/layered-architecture.png

8

a state-oriented economic model, and a peer-to-peer network. The

Proof-of-Work based consensus makes the CKB a public and

censorship-resistant service. The combination of CKB VM and the

Cell model creates a stateful Turing-complete programming model

for developers, making state generation (or layer 2) on CKB practical.

The CKB economic model is designed for common knowledge

custody and long-term sustainability. The CKB peer-to-peer network

provides secure and optimal communication between different

types of nodes.

9

3. Consensus

CKB consensus is an improved Nakamoto consensus based on

Proof-of-Work, that aims to achieve openness, correctness and high

performance in distributed environments with network delay and

Byzantine node faults.

Permissionless blockchains run in open networks where nodes can

join and exit freely, with no liveness assumptions. These are severe

problems for traditional BFT consensus algorithms to solve. Satoshi

Nakamoto introduced economic incentives and probabilistic

consensus to solve these problems. Nakamoto consensus in

Bitcoin uses blocks as votes, which takes longer (up to 10 minutes

to an hour) to confirm transactions and leads to an inferior user

experience.

CKB consensus is a Nakamoto consensus variant, which means it

allows nodes to join and exit the network freely. Every node can

participate in the consensus process either by mining (running a

specific algorithm to find the Proof-of-Work) to produce new blocks,

or by verifying new blocks are valid. CKB uses an ASIC-neutral Proof-

10

of-Work function, with the goals of distributing tokens as evenly as

possible and making the network as secure as possible.

Correctness includes eventual consistency, availability, and fairness.

Eventual consistency guarantees every node sees an identical copy

of state. Availability makes sure the network responds to users'

requests within a reasonable time. Fairness ensures mining nodes

get fair returns for their efforts to keep the network functioning

securely.

High performance includes transaction latency, the time between

the submission of a request and the confirmation of its execution

results, and transaction throughput, the number of transactions the

system is capable of processing per second. Both of these

measures depend on block time, which is the average time between

two consecutive blocks.

Please check the CKB Consensus Paper for more details.

11

4. Programming Model

CKB provides a stateful Turing-complete programming model

based on CKB VM and cell model.

Table 1. Comparison of Bitcoin, Ethereum and CKB Programming Model

 Bitcoin Ethereum CKB

Instruction Set Script EVM RISC-V

Cryptographic

Primitive
Opcode Precompile Assembly

Stateful No Yes Yes

State Type Ledger General General

State Model UTXO Account Cell

State

Verification
On-chain On-chain On-chain

State Generation Off-chain On-chain Off-chain

The CKB programming model consists of three parts:

• state generation (off-chain)

• state verification (CKB VM)

• state storage (Cell model)

12

In this model, decentralized application logic is split into two parts

(generation and verification), running in different places. State

generation logic runs off-chain on the client side; new states are

packaged into transactions and broadcasted to the entire network.

CKB transactions have an inputs/outputs based structure like

Bitcoin. Transaction inputs are references to previous outputs,

along with proofs to unlock them. The client includes generated new

states as transaction outputs, which are called cells in CKB. Cells

are the primary state storage units in CKB and are assets owned by

users that must follow associated application logic specified by

scripts. CKB VM executes these scripts and verifies proofs included

in inputs to make sure the user is permitted to use referenced cells

and the state transition is valid under specified application logic. In

this way, all nodes in the network verify that new states are valid and

keep these states in custody.

State in CKB is a first-class citizen, states are included in

transactions and blocks and synchronized directly among nodes.

Although the programming model is stateful, scripts running in CKB

VM are pure functions with no internal state, which makes CKB

scripts deterministic, conducive to parallel execution, and easy to

compose.

13

4.1 State Generation and Verification

Decentralized applications on Nervos separate the generation and

verification of state. While these processes occur in different places,

CKB provides the additional flexibility to utilize different algorithms

for state generation and verification.

Utilizing the same algorithm on both generation and verification

sides is a straightforward choice that works for general problems.

In this model, the same algorithm has two implementations, one

that runs off-chain in any execution environment targeted by the

application, and the other one runs on-chain in CKB VM. New states

are generated off-chain with this algorithm (based on previous

states and user inputs), packaged as a transaction, and then

broadcasted to the network. CKB nodes run this same algorithm on-

chain, provide it the same previous states and user inputs, and then

verify the result matches the transaction-specified outputs.

There are several advantages to this separation of state generation

and validation:

• Deterministic transactions: Certainty of transaction execution

is one of the core pursuits of decentralized applications. If

14

transactions include only user input and new states are the

result of computation on nodes (as seen in Ethereum), the

transaction creator cannot be certain about the on-chain

computation context, which may lead to unexpected results.

In CKB, users generate new states on the client side. They can

confirm the new states before broadcasting their state

transition to the network. The transaction outcome is certain:

either the transaction passes on-chain verification and the

new state is accepted, or the transaction is deemed invalid

and no state change is made to CKB (Figure 1).

• Parallelism: If transactions only include user inputs and new

states are generated by nodes, then nodes will not know what

state is going to be accessed by the verification process, and

cannot determine dependencies between transactions. In

CKB, because transactions explicitly include previous states

and new states, nodes can see dependencies between

transactions prior to verification, and can process

transactions in parallel.

• Higher resource utilization: As application logic is split and run

in different places, the network can distribute computational

workload more evenly across nodes and clients, and thus

utilize system resources more efficiently.

15

• Flexible state generation: Even when the same algorithms are

used, developers can implement generation and validation in

different ways. On the client side there is the flexibility to

choose the programming language that provides for better

performance and fast development.

In some scenarios, state verification can utilize a different (but

associated) algorithm that is much more efficient than the one used

for state generation. The most typical example is seen in Bitcoin

transactions: Bitcoin transaction construction consists mainly of a

searching process to identify appropriate UTXOs to use, while

verification is the addition of numbers and simple comparison.

Other interesting examples include sorting and searching

algorithms: the computational complexity for quicksort, one of the

best sorting algorithms for the average case, is O(Nlog(N)), but the

algorithm to verify the result is just O(N). Searching for the index of

an element in a sorted array is O(log(N)) with binary search, but its

verification only takes O(1). The more complex the business rules,

the higher probability that there can be asymmetric generation and

validation algorithms with differing computational complexity.

16

System throughput can be improved by utlizing asymmetry between

state generation and validation. Moving details of computation to

the client side is also valuable for algorithm protection and privacy.

With the advancement of technologies such as zero-knowledge

proofs, we may find efficient generation and verification solutions

to general problems, and CKB is a natural fit for these types of

solutions.

We refer to programs that generate new states and create new cells

as Generators. Generators run locally on the client side (off-chain).

They utilize user input and existing cells as program inputs, to create

new cells with new states as outputs. The inputs that Generators

use and the outputs they produce together form a transaction.

17

Figure 2. Separation of state generation and verification

4.2 Cell

Cells are the primary state units in CKB, within them users can

include arbitrary states. A cell has the following fields:

• capacity - Size limit of the cell. A cell's size is the total size of

all fields contained in it.

• data - State data stored in this cell. It could be empty, however

the total bytes used by a cell (including data), must always be

less than or equal to its capacity.

• type: State verification script.

https://github.com/stwith/rfcs/blob/master/rfcs/0002-ckb/images/separation-of-generation-verification.png

18

• lock: Script that represents the ownership of the cell. Owners

of cells can transfer cells to others.

A cell is an immutable object, no one can modify it after creation.

Every cell can only be used once, it cannot be used as input for two

different transactions. Cell ‘updates’ mark previous cells as history

and create new cells with the same capacity to replace them. By

constructing and sending transactions, users provide new cells with

new states in them and invalidate previous cells that store old states

atomically. The set of all current (or live) cells represents the latest

version of all common knowledge in CKB, and the set of history (or

dead) cells represents all historical versions of common knowledge.

CKB allows users to transfer a cell's capacity all at once, or transfer

only a fraction of a cell's capacity, which would in turn lead to more

cells being created (e.g., a cell whose capacity is 10 bytes can

become two cells whose capacity is 5 bytes each).

Two kinds of scripts (type and lock) are executed in CKB VM. CKB

VM executes the type script when a cell is created in a transaction

output, to guarantee the state in the cell is valid under specific rules.

CKB VM executes the lock script, taking proofs as arguments, when

the cell is referenced by a transaction input, to make sure the user

19

has appropriate permissions to update or transfer the cell. If the

execution of the lock script returns true, the user is allowed to

transfer the cell or update its data according to validation rules that

are specified by the type script.

This type and lock script pair allows all kinds of possibilities, for

example:

• Upgradable cryptography - Anyone can deploy useful

cryptography libraries written in languages such as C or C++

and use them in type and lock scripts. In CKB VM, there are no

hardcoded cryptographic primitives, users are free to choose

any cryptographic signature scheme they'd like to use to sign

transactions.

• Multisig - Users can easily create M-of-N multisig or more

complex lock scripts.

• Lending - Cell owners can lend cells for others to use while

still maintaining their ownership of the cells.

The Cell model is a more generic state model compared to the UTXO

or Account model. Both the UTXO and the Account model can

express relationships between assets and their owners. The UTXO

model defines ownership of assets (with the lock script), while the

20

Account model defines ownership of assets by owner (with the

account balance). The UTXO model makes the ledger history more

clear, but its lack of generic state storage makes its already

inexpressive scripts harder to use. The Account model is easy to

understand and can support authorizations and identities well, but

it presents challenges to processing transactions in parallel. The

Cell model with lock and type scripts takes the best of both models

to provide a more generic state model.

4.3 VM

CKB VM is a RISC-V instruction set based VM for executing type and

lock scripts. It uses only standard RISC-V instructions, to maintain a

standard compliant RISC-V software implementation which can

embrace the broadest industrial support. CKB implements

cryptographic primitives as ordinary assembly running on its VM,

instead of customized instructions. It supports syscall, by which

scripts can read metadata such as current transaction and general

blockchain information from CKB. CKB VM defines cycles for each

instruction, and provides total cycles executed during transaction

verification to help miners determine transaction fees.

21

Existing blockchains hardcode cryptographic primitives in the

protocol. For example, Bitcoin has special cryptographic opcodes

such as OP_CHECK*, and Ethereum uses special 'precompiled'

contracts located at a special address (e.g.

0000000000000000000000000000000000000001) to support

cryptographic operations such as ecrecover. To add new

cryptographic primitives to these blockchains, we can only soft-fork

(as Bitcoin re-uses opcodes to support new primitives) or hard-fork.

CKB VM is a crypto-agnostic virtual machine. There are no special

cryptographic instructions hardcoded in CKB VM. New

cryptographic primitives can always be deployed and used by

scripts like an ordinary library. Being a RISC-V standard compliant

implementation means existing cryptographic libraries written in C

or other languages can be easily ported to CKB VM and used by cell

scripts. CKB even implements the default hash function and public-

key cryptography used in transaction verification this way. Being

crypto-agnostic allows decentralized application developers on

Nervos to use any new cryptography (such as Schnorr signatures,

BLS signatures, and zkSNARKs/zkSTARKs) they'd like without

affecting other users, and allows CKB users to keep their assets

secure even in the post-quantum era.

22

CKB VM chooses a hardware targeting ISA because blockchain is

hardware-like software. Though its creation is as easy as software,

its upgrade is as difficult as hardware. As an ISA designed for chips,

RISC-V is very stable, its core instruction set is implausible to

change in the future. The ability to keep compatibility with the

ecosystem without the need of a hard-fork is a key feature of a

blockchain virtual machine like CKB VM. The simplicity of RISC-V

also makes runtime cost modeling easy, which is crucial for

transaction fee calculations.

Please check RFC 0003 for more details of CKB VM.

4.4 Transaction

Transactions express state transitions, resulting in cell transfer,

update, or both. In a single transaction, users can update data in one

or more cells or transfer their cells to other users. All state

transitions in the transaction are atomic, they will either all succeed

or all fail.

A transaction includes the following:

https://github.com/nervosnetwork/rfcs/blob/master/rfcs/0003-ckb-vm/0003-ckb-vm.md

23

• deps: Dependent cell set, provides read-only cells required by

transaction verification. These must be references to living

cells.

• inputs: Cell references and proofs. Cell references point to live

cells that are transferred or updated in the transaction. Proofs

(e.g., signature) prove that the transaction creator has the

permission to transfer or update the referenced cells.

• outputs: New cells created in this state transition.

The design of the CKB cell model and transactions is friendly to light

clients. Since all the states are in blocks, block synchronization also

accomplishes state synchronization. Light clients only need to

synchronize blocks and do not need additional state

synchronization or state transition computation. If only events were

stored in blocks, full nodes would be required for state

synchronization. State synchronization can be difficult across large

networks because there are weak incentives to synchronize. This is

different from block synchronization, in which miners are

incentivized to broadcast blocks as widely as possible. With no

need for extra state synchronization, the protocol makes light nodes

and full nodes more equal peers, leading to a more robust and

decentralized system.

24

Figure 3. Transaction Parallelism and Conflict Detection

The deps and inputs in CKB transactions make it easier for nodes

to determine transaction dependencies and perform parallel

transaction processing (Figure 4). Different types of cells can be

mixed and included in a single transaction to achieve atomic

operation across types.

https://github.com/stwith/rfcs/blob/master/rfcs/0002-ckb/images/transaction-parallelism.png

25

5. Economic Model

A well-designed economic model should incentivize all participants

to contribute to the success of the crypto-economy and maximize

the utility of the blockchain.

The CKB economic model is designed to motivate users, developers

and node operators to work toward the common goal of common

knowledge custody. The subject of the CKB economic model is

state instead of computation, by using cell capacity and transaction

fees as incentives for stakeholders.

5.1 State Cost and Cell Capacity

The creation and storage of states on the CKB incur costs. The

creation of new states needs to be verified by full nodes (which incur

computational costs), and the storage of states requires full nodes

to provide disk space on an ongoing basis. Current permissionless

blockchains only charge one-time transaction fees, but allow states

to be stored on all full nodes, occupying storage space indefinitely.

26

In CKB, cells are basic storage units of state. A cell owner can use

the cell to store state himself or lend it out to others. Because a

cell's capacity can only be utilized by one user at a time, an owner

utilizing the capacity himself would give up the opportunity to earn

interest by lending the capacity out (either to CKB or to other users).

With this opportunity cost, users pay for storage with a cost that is

proportional to both space and time - the larger the capacity and the

longer time they occupy it, the higher opportunity cost they incur.

The advantage of CKB's implicit state cost model, when compared

to an upfront payment model (such as storage rent discussed in the

Ethereum community), is that it avoids the problem that upfront

payments could be used up and the system would have to recycle

the state and break any applications or contracts depend on it.

Cell metadata (capacity, type and lock) are states, which will occupy

users' cell capacity and incur a state cost as well. This meta cost

would incentivize users to create fewer cells when possible,

increasing capacity efficiency.

5.2 Computation Cost and Transaction Fees

27

Updating a cell’s data or transferring cell ownership incurs

transaction fees. Miners can set the transaction fee level that they

are willing to accept based on CKB VM cycles used and state

changes in transaction verification, allowing the market to

determine transaction fees. With the programming model described

above, cell owners can also pay transaction fees on behalf of their

users.

As cell capacity is the only native asset in CKB, it is the most

convenient asset users can use to pay transaction fees. However,

users can also use any other user-defined assets as long as miners

accept them; there is no hard-coded payment method in CKB

transactions. This is allowed in CKB because its economic model

and native asset do not center on computation, but states. Although

cell capacity can be used as a means of paying transaction fees, its

primary function is secure common knowledge storage, which can

store state and hold it long-term. Payment method competition in

the fee market does not compromise its value.

Restricting the transaction fee payment method to a blockchain's

native asset is a significant obstacle preventing blockchains' mass

adoption. This requires users to acquire native assets before using

28

any of the blockchain's services, raising the barrier of entry for new

users. By allowing cell owners to pay fees on behalf of their users

and allowing payment with any user-defined assets, CKB can

provide a better experience to users and wider choices of business

models for developers.

Please check the Nervos CKB Economic Paper for details of the

economic model.

29

6. Network

We can categorize CKB nodes into three types:

• Mining Node: They participate in the CKB consensus process.

Mining nodes collect new transactions, package them into

blocks and produce new blocks when they have found a Proof-

of-Work. Mining nodes do not have to store the entire

transaction history, only the current cell set.

• Full Node: They verify new blocks and transactions, relay

blocks and transactions, and select the chain fork on which

they agree. Full nodes are the verifiers of the network.

• Light Node: They trust full nodes, only subscribe and store a

subset of cells that they are concerned with. They use minimal

resources. Users increasingly rely on mobile devices and

mobile apps to access the Internet, the light node is designed

to run on mobile devices.

Uniform blockchain networks (in which each node has the same role

and performs the same function) are currently facing severe

challenges. Full nodes validate all blocks and transaction data,

requiring minimum external trust, but they incur a higher cost and

30

are inconvenient to run. Light clients trade minimal trust for a

substantial cost reduction on transaction verification, leading to a

much better user experience. In a mature crypto-economy network,

the largest group of nodes would be light nodes, followed by full

nodes and mining nodes. Because light nodes depend on full nodes

for state and state verification, a large number of light nodes would

require a large number of full nodes to serve them. With CKB's

economic model, both computation and storage resources required

by a full node can be kept at a reasonable level, and the barriers to

running a full node low, leading to a large group of service providers

for light nodes and a highly decentralized network.

31

7. Summary

We envision a layered crypto-economy and CKB is its base layer.

CKB is the decentralized trust root of this crypto-economy, it

ensures the security of the trustless activities of the upper layers.

It's a common knowledge custody network, in which states are

verified by global consensus and stored in a highly available peer-

to-peer network. CKB is designed from scratch to meet the needs of

a layered architecture, and its design focuses on states rather than

computation. In CKB, users and developers can define, issue,

transfer and store crypto-assets, they can also create digital

identities and utilize these identities in the crypto-economy. Only our

imagination is the bounds of its use.

32

8. References

1. Satoshi Nakamoto, “Bitcoin A Peer-to-Peer Electronic Cash

System”, 2008

2. Vitalik Buterin, "Ethereum A Next-Generation Smart Contract and

Decentralized Application Platform", 2014

33

9. Appendix

Common Knowledge is the knowledge that’s accepted by everyone

in a community. Participants in the community not only accept the

knowledge themselves but know that others in the community also

accept the knowledge.

In the past, common knowledge was scattered across individual's

minds, and its formation required repeated communication and

confirmation. Today, with the advancement of cryptography and

distributed ledger technology, algorithms and machines are

replacing humans as the medium for the formation and storage of

common knowledge. Every piece of data in the blockchain, including

digital assets and smart contracts, is a piece of common knowledge.

Blockchains are common knowledge bases. Participating in a

blockchain network implies accepting and helping validate the

common knowledge contained in it. Blockchains store transactions

with their proofs, users can trust the validity of these transactions

and know other users trust it too.

34

The various ways in which the knowledge on which people base

their plan is communicated to them is the crucial problem for any

theory explaining the economic process, and the problem of what is

the best way to utilizing knowledge initially dispersed among all the

people is at least one of the main problems of economic policy - or

of designing an efficient economic system.

- The Use of Knowledge in Society, Friedrich A. Hayek, 1945

35

10. Connect Nervos

 Website：https://www.nervos.org

 Github：https://github.com/nervosnetwork

 Blogs：https://medium.com/nervosnetwork

 Twitter：https://twitter.com/nervosnetwork

 Telegram：http://t.me/nervosnetwork

 Forum：https://talk.nervos.org

 Reddit：https://www.reddit.com/r/NervosNetwork

https://www.nervos.org/
https://github.com/nervosnetwork
https://medium.com/nervosnetwork
https://twitter.com/nervosnetwork
http://t.me/nervosnetwork
https://talk.nervos.org/
https://www.reddit.com/r/NervosNetwork

