
Loopring:

A Decentralized Token Exchange Protocol

Daniel Wang

daniel@loopring.org

Jay Zhou

jay@loopring.org

Alex Wang

alex@loopring.org

Matthew Finestone

matt.finestone@gmail.com

https://loopring.org

April 6, 2018

Abstract

Loopring is an open protocol for building decentralized exchanges. Loopring operates as a public set of smart
contracts responsible for trade and settlement, with an off-chain group of actors aggregating and communicating orders.
The protocol is free, extensible, and serves as a standardized building block for decentralized applications (dApps) that
incorporate exchange functionality. Its interoperable standards facilitate trustless, anonymous trading. An important
improvement over current decentralized exchange protocols is the ability for orders to be mix-and-matched with other,
dissimilar orders, obviating the constraints of two-token trading pairs and drastically improving liquidity. Loopring
also employs a unique and robust solution to prevent front-running: the unfair attempt to submit transactions into a
block quicker than the original solution provider. Loopring is blockchain agnostic, and deployable on any blockchain
with smart contract functionality. At the time of writing, it’s operable on Ethereum [1] [2] and Qtum [3] with NEO [4]
under construction.

1 Introduction

With the proliferation of blockchain-based assets, the need
to exchange these assets amongst counterparties has signifi-
cantly increased. As thousands of new tokens are introduced
- including the tokenization of traditional assets - this need
is magnified. Whether exchanging tokens for speculative
trading motivations, or converting to access networks via
their native utility tokens, the ability to exchange one cryp-
toasset for another is foundational for the larger ecosystem.
Indeed, there is a potential energy in assets [5], and realizing
this energy - unlocking capital - requires not only asserting
ownership, which blockchains have immutably allowed for,
but the ability to freely transfer and transform these assets.

As such, the trustless exchange of tokens (value) is a
compelling use case for blockchain technology. Until now,
however, crypto enthusiasts have largely settled for trading
tokens on traditional centralized exchanges. The Loopring
protocol is needed because, just as Bitcoin [6] dutifully
emphasized that, in regards to peer-to-peer electronic cash,
“the main benefits are lost if a trusted third party is still
required to prevent double-spending”, so too are the main
benefits of decentralized assets lost if they must pass through
trusted, gated, centralized exchanges.

Trading decentralized tokens on centralized exchanges
doesn’t make sense from a philosophical perspective, as

it fails to uphold the virtues these decentralized projects
espouse. There are also numerous practical risks and lim-
itations in using centralized exchanges which are described
below. Decentralized exchanges (DEXs) [7] [8] [9] have
sought to address these issues, and in many cases have
succeeded in alleviating security risks by using blockchains
for disintermediation. However, as DEX capability becomes
crucial infrastructure for the new economy, there is substan-
tial room for performance improvement. Loopring aims to
provide modular tools for said infrastructure with its dApp
agnostic open protocol.

2 Current Exchange Landscape

2.1 Inadequacies of Centralized Exchanges

The three primary risks of centralized exchanges are; 1) Lack
of security, 2) Lack of transparency, and 3) Lack of liquidity.

Lack of Security arises from users typically surrender-
ing control of their private-keys (funds) to one centralized
entity. This exposes users to the possibility that centralized
exchanges fall prey to malicious hackers. The security and
hacking risks facing all centralized exchanges are well known
[10] [11], yet are often accepted as “table stakes” for token
trading. Centralized exchanges continue to be honeypots for

1

hackers to attack as their servers have custody over millions
of dollars of user funds. Exchange developers can also make
honest, accidental errors with user funds. Simply, users
are not in control of their own tokens when deposited at
a centralized exchange.

Lack of Transparency exposes users to the risk of
dishonest exchanges acting unfairly. The distinction here is
by the exchange operator’s malicious intentions, as users are
not truly trading their own assets on centralized exchanges,
but rather, an IOU. When tokens are sent to the exchange’s
wallet, the exchange takes custody, and offers an IOU in its
place. All trades are then effectively between users’ IOUs.
To withdraw, users redeem their IOU with the exchange,
and receive their tokens to their external wallet address.
Throughout this process there is a lack of transparency,
and the exchange can shutdown, freeze your account, go
bankrupt, etc. It is also possible that they use user assets
for other purposes while in custody, such as lending them
out to third parties. Lack of transparency can cost users
without a total loss of funds, such as in higher trading fees,
delays at peak demand, regulatory risk, and orders being
front ran.

Lack of Liquidity. From the point of view of exchange
operators, fragmented liquidity inhibits entry by new ex-
changes because of two winner-takes-all scenarios. First, the
exchange with the greatest number of trading pairs wins,
because users find it desirable to conduct all their trades on
one exchange. Second, the exchange with the largest order
book wins, because of favorable bid-ask spreads for each
trading pair. This discourages competition from newcomers
because it is difficult for them to build up initial liquidity.
As a result, many exchanges command a high market share
despite user complaints and even major hacking incidents.
It’s worth noting that as centralized exchanges win market
share, they become an ever-larger hacking target.

From the point of view of users, fragmented liquidity
significantly reduces user experience. In a centralized ex-
change, users are only able to trade within the exchange’s
own liquidity pools, against its own order book, and be-
tween its supported token pairs. To trade token A for
token B, users must go to an exchange that supports both
tokens or register at different exchanges, disclosing personal
information. Users often need to execute preliminary or
intermediate trades, typically against BTC or ETH, paying
bid-ask spreads in the process. Finally, the order books may
not be deep enough to complete the trade without material
slippage. Even if the exchange purports to process large
volumes, there is no guarantee that this volume and liquidity
is not fake [12].

The result is disconnected silos of liquidity and a frag-
mented ecosystem that resembles the legacy financial sys-
tem, with significant trading volume centralized on few
exchanges. The global liquidity promises of blockchains hold
no merit within centralized exchanges.

2.2 Inadequacies of Decentralized Ex-

changes

Decentralized exchanges differ from centralized exchanges
in part because users maintain control of their private-keys
(assets) by performing trades directly on the underlying
blockchain. By leveraging the trustless technology of cryp-
tocurrencies themselves, they successfully mitigate many of
the abovementioned risks surrounding security. However,
problems persist in regards to performance and structural
limitations.

Liquidity often remains an issue as users must search
for counterparties across disparate liquidity pools and stan-
dards. Fragmented liquidity effects are present if DEXs
or dApps at large don’t employ consistent standards to
interoperate, and if orders are not shared/propagated across
a wide network. The liquidity of limit order books, and,
specifically, their resiliency – how fast filled limit orders
are regenerated – can significantly affect optimal trading
strategies [13]. The absence of such standards has resulted
not only in reduced liquidity, but also exposure to an array
of potentially insecure proprietary smart contracts.

Furthermore, since trades are performed on chain, DEXs
inherit the limitations of the underlying blockchain, namely:
scalability, delays in execution (mining), and costly modifi-
cations to orders. Thus, blockchain order books do not scale
particularly well, as executing code on the blockchain incurs
a cost (gas), making multiple order-cancellation cadences
prohibitively expensive.

Finally, because blockchain order books are public, the
transaction to place an order is visible by miners as it awaits
being mined into the next block and placed into an order
book. This delay exposes the user to the risk of being front
run and having the price or execution move against him.

2.3 Hybrid Solutions

For the above reasons, purely blockchain-based exchanges
have limitations that make them uncompetitive with cen-
tralized exchanges. There is a tradeoff between on-chain
inherent trustlessness, and centralized exchange speed and
order flexibility. Protocols such as Loopring and 0x [14]
extend a solution of on-chain settlement with off-chain order
management. These solutions revolve around open smart
contracts, but navigate scalability limitations by performing
several functions off-chain and giving nodes flexibility in
fulfilling critical roles for the network. However, drawbacks
remain for the hybrid model as well [15]. The Loopring
protocol proposes meaningful differences in our approach to
a hybrid solution throughout this paper.

3 Loopring Protocol

Loopring is not a DEX, but a modular protocol for building
DEXs on multiple blockchains. We disassemble the compo-
nent parts of a traditional exchange and offer a set of public

2

smart contracts and decentralized actors in its place. The
roles in the network include wallets, relays, liquidity-sharing
consortium blockchains, order book browsers, Ring-Miners,
and asset tokenization services. Before defining each, we
should first understand Loopring orders.

3.1 Order Ring

Loopring orders are expressed in what we call a Unidirec-
tional Order Model (UDOM)[16]. UDOM expresses orders
as token exchange requests, amountS/amountB, (amount to
sell/buy) instead of bids and asks. Since every order is just
an exchange rate between two tokens, a powerful feature of
the protocol is the mixing and matching of multiple orders in
circular trade. By using up to 16 orders instead of a single
trading pair, there is a dramatic increase in liquidity and
potential for price improvement.

ORDER#2

owner: Y

amountS: 9B

amountB: 12C

ORDER#1

owner: X

amountS: 10000A

amountB: 2B

ORDER#3

owner: Z

amountS: 100C

amountB: 160A

7898A

8B 98C

Figure 1: An order-ring of 3 orders

The above figure shows an order-ring of 3 orders. Each
order’s token to sell (tokenS) is another order’s token to
buy (tokenB). It creates a loop that allows each order to
exchange their desired tokens without requiring an opposing
order for its pair. Traditional order pair trades can, of
course, still be executed, in what is essentially a special case
of an order-ring.

Definition 3.1 (order-ring) Let C0, C1, · · · , Cn−1 be n
different tokens, O0→1, · · · , Oi→i⊕1, · · · , On−1→0 be n
orders. Those orders can form a order-ring for trading:

O0→1 → · · · → Oi→i⊕1 → · · · → On−1→0,

where n is the length of the order-ring, and i ⊕ 1 ≡ i + 1
mod n.

An order-ring is valid when all component transactions
can be executed at an exchange rate equal to or better than
the original rate specified implicitly by the user. To verify
order-ring validity, Loopring protocol smart contracts must
receive order-rings from ring-miners where the product of
the original exchange rates of all orders is equal to or greater
than 1.

Let’s assume Alice and Bob want to trade their token
A and B. Alice has 15 token A and she wants 4 token B for
them; Bob has 10 token B and he wants 30 token A for them.

Who is buying and who is selling? This depends only
on the asset we fix to give price quotations. If token A is
the reference, then Alice is buying token B for the price of
15

4
= 3.75A, while Bob is selling 10 token B for the price

of 30

10
= 3.00A. In the case of fixing token B as reference,

we say that Alice is selling 15 token A for the price of
4

15
= 0.26666667B and Bob is buying 10 token A for the

price of 10

30
= 0.33333334B. Hence, who’s the buyer or seller

is arbitrary.
In the first situation Alice is willing to pay a higher

price (3.75A) than the price Bob is selling his tokens for
(3.00A), while in the second situation Bob is willing to pay a
higher price (0.33333334B) than the price Alice is selling her
tokens for (0.26666667B). It is clear that a trade is possible
whenever the buyer is willing to pay an equal or higher price
than the seller’s price.

15

4

30

10

=
10

30

4

15

=
15

4
· 10
30

= 1.25 > 1 (1)

Thus, for a set of n orders to be able to be filled, fully or
partially, we need to know if the product of each one of the
exchange rates as buy orders results in a number greater or
equal to 1. If so, all the n orders can be either partially, or
totally filled [17].

If we introduce a third counterparty, Charlie, such that
Alice wants to give x1 token A and receive y1 token B,
Bob wants to give x2 token B and receive y2 token C, and
Charlie wants to give x3 token C and receive y3 token A. The
necessary tokens are present, and the trade is possible if:

x1 · x2 · x3

y1 · y2 · y3
≥ 1 (2)

See section 7.1 for more details about Loopring’s orders.

4 Ecosystem Participants

The following ecosystem participants jointly provide all
functionalities a centralized exchange has to offer.

• Wallets: A common wallet service or interface that
gives users access to their tokens and a way to send
orders to the Loopring network. Wallets will be
incentivized to produce orders by sharing fees with
ring-miners (see section 8). With the belief that the
future of trading will take place within the safety of
individual user’s wallets, connecting these liquidity
pools through our protocol is paramount.

• Consortium Liquidity Sharing Blockchain/Relay-
Mesh: A relay-mesh network for order & liquidity
sharing. When nodes run Loopring relay software,
they are able to join an existing network and
share liquidity with other relays over a consortium
blockchain. The consortium blockchain we are
building as a first implementation has near real time
order sharing (1-2 second blocks), and trims old
history to allow for faster download by new nodes.
Notably, relays need not join this consortium; they
can act alone and not share liquidity with others, or,
they can start and manage their own liquidity sharing
network.

3

• Relays/Ring-Miners: Relays are nodes that re-
ceive orders from wallets or the relay-mesh, maintain
public order books and trade history, and optionally
broadcast orders to other relays (via any arbitrary
off-chain medium) and/or relay-mesh nodes. Ring-
mining is a feature – not a requirement – of relays.
It is computationally heavy and is done completely
off-chain. We call relays with the ring-mining feature
turned on “Ring-Miners”, who produce order-rings by
stitching together disparate orders. Relays are free in
(1) how they choose to communicate with one another,
(2) how they build their order books, and (3) how they
mine order-rings (mining algorithms).

• Loopring Protocol Smart Contracts (LPSC):
A set of public and free smart contracts that checks
order-rings received from ring-miners, trustlessly set-
tles and transfers tokens on behalf of users, incentivizes
ring-miners and wallets with fees, and emits events.
Relays/order browsers listen to these events to keep
their order books and trade history up to date. See
appendix A for details.

• Asset Tokenization Services (ATS): A bridge
between assets that cannot be directly traded on
Loopring. They are centralized services run by trust-
worthy companies or organizations. Users deposit
assets (real, fiat or tokens from other chains) and get
tokens issued, which can be redeemed for the deposit
in the future. Loopring is not a cross-chain exchange
protocol (until a suitable solution exists), but ATS
enable trading of ERC20 tokens [18] with physical
assets as well as assets on other blockchains.

5 Exchange Process

1. Protocol Authorization: In figure 2, user Y who
wants to exchange tokens authorizes the LPSC to
handle amountS of token B the user wants to sell. This
does not lock the user’s tokens, who remains free to
move them while the order is processed.

2. Order Creation: The current rate and order book
for token B vs token C, are provided by relays or
other agents hooked up to the network, such as order
book browsers. User Y places an order (limit order)
specifying amountS and amountB and other parameters
through any integrated wallet interface. An amount of
LRx can be added to the order as a fee for ring-miners;
higher LRx fee means a better chance to be processed
earlier by ring-miners. The order’s hash is signed with
user Y’s private-key.

3. Order Broadcast: The wallet sends the order and
its signature to one or more relays. Relays update
their public order book. The protocol doesn’t require

order books to be built in a certain way, such as first-
come-first-serve. Instead, relays have the power to
make their own design decisions in building their order
books.

4. Liquidity Sharing: Relays broadcast the order to
other relays through any arbitrary communication
medium. Once again, there is flexibility how/whether
nodes interact. To facilitate a certain level of network
connectivity, there is a built-in liquidity sharing relay-
mesh using a consortium blockchain. As mentioned
in the prior section, this relay-mesh is optimized for
speed and inclusivity.

user X

user Y

user Z

relay M

relay N

ORDER 1

owner: X

amountS: 10000 A

amountB: 2 B

ORDER 2

owner: Y

amountS: 9 B

amountB: 12 C

ORDER 3

owner: Z

amountS: 100 C

amountB: 160 A

ORDER 1

owner: X

amountS: 10000 A

amountB: 2 B
ORDER 2

owner: Y

amountS: 9 B

amountB: 12 C
ORDER 3

owner: Z

amountS: 100 C

amountB: 160 A

blockchain

accountX

accountY

accountZ

accountM

accountN

LPSC

share liquidity

ring-mining

submitRing

7898 A

8 B

98 C

Fee

12

3

4

5

6

settlement

Figure 2: Loopring Exchange Process

5. Ring-Mining (Order Matching): Ring-miners try
to fill the order fully or partially at the given exchange
rate or better by matching it with multiple other or-
ders. Ring-mining is the main reason why the protocol
is able to provide high liquidity over any pair. If the
executed rate is better than what user Y specified,
margin is shared amongst all orders in the order-ring.
As a reward, the ring-miner chooses between claiming
part of the margin (Margin-Split, and giving back the
LRx to the user), or simply keeping the LRx fee.

6. Verification & Settlement: The order-ring is re-
ceived by LPSC. It makes multiple checks to verify
the ring-miner supplied data and determines if the

4

order-ring can be settled fully or partially (depending
on the fill rate of orders in-ring and tokens in users’
wallets). If all checks are successful, the contract
atomically transfers the tokens to users and pays the
ring-miner and wallet fees at the same time. If user
Y’s balance as determined by the LPSC is insufficient,
it will be considered scaled-down: a scaled-down
order will automatically scale up to its original size
if sufficient funds are deposited to its address, unlike
a cancellation, which is a one way manual operation
and cannot be reversed.

6 Operational Flexibility

It’s important to note that Loopring’s open standard allows
participants significant flexibility in how they operate. Ac-
tors are free to implement novel business models and provide
value for users, earning LRx fees on volume or other metrics
in the process (if they so choose). The ecosystem is modular
and meant to support participation from a multitude of
applications.

6.1 Order Book

Relays can design their order books in any number of ways
to display and match users’ orders. A first implementation
of our own order book follows an OTC model, where limit
orders are positioned based on price alone. Timestamps of
orders, in other words, have no bearing on the order book.
However, a relay is free to design their order book in such a
way as to emulate a typical centralized exchange’s matching
engine, where orders are ranked by price, while respecting
timestamps as well. If a relay was inclined to offer this type
of order book, they can own/integrate with a wallet, and
have those wallet orders sent solely to the single relay, who
would then be able to match orders based on time. Any
such configuration is possible.

Whereas other DEX protocols at times require Relays
to have resources - initial token balances to place taker
orders - Loopring Relays need only find matchable orders to
consummate a trade, and can do so without initial tokens.

6.2 Liquidity Sharing

Relays are free to design how they share liquidity (orders)
with each other. Our consortium blockchain is but one solu-
tion to accomplish this, and the ecosystem is free to network
and communicate as they wish. Besides joining a consortium
blockchain, they can build and manage their own, creating
rules/incentives as they see fit. Relays can also work alone,
as seen in the time-sensitive wallet implementation. Of
course, there are clear advantages in communicating with
other Relays in pursuit of network effects, however, different
business models could merit peculiar sharing designs and
split fees in any number of ways.

7 Protocol Specification

7.1 Anatomy of an Order

An order is a pack of data that describes the intent of the
user’s trade. A Loopring order is defined using the Uni-
Directional Order Model, or UDOM, as follows:

message Order {

address protocol;

address owner;

address tokenS;

address tokenB;

uint256 amountS;

uint256 amountB;

unit256 lrcFee

unit256 validSince; // Seconds since epoch

unit256 validUntil; // Seconds since epoch

uint8 marginSplitPercentage; // [1-100]

bool buyNoMoreThanAmountB;

uint256 walletId;

// Dual-Authoring address

address authAddr;

// v, r, s are parts of the signature

uint8 v;

bytes32 r;

bytes32 s;

// Dual-Authoring private-key,

// not used for calculating order’s hash,

// thus it is NOT signed.

string authKey;

uint256 nonce;

}

To ensure the origin of the order, it is signed against
the hash of its parameters, excluding authAddr, with the
user’s private-key. The authAddr parameter is used for
signing order-rings that this order is part of, which prevents
front-running. Please reference section 9.1 for more details.
The signature is represented by the v, r, and s fields, and
is sent alongside the order parameters over the network.
This guarantees the order stays immutable during its whole
lifetime. Even though the order never changes, the protocol
can still compute its current state based on the balance of
its address along with other variables.

UDOM doesn’t include a price (which must be a floating-
point number by nature), but, instead uses the term rate or
r, which is expressed as amountS/amountB. The rate is not
a floating-point number but an expression that will only be
evaluated with other unsigned integers on demand, to keep
all intermediate results as unsigned integers and increase
calculation accuracy.

7.1.1 Buy Amounts

When a ring-miner ring-matches orders, it’s possible that
a better rate will be executable, allowing users to get

5

more tokenB than the amountB they specified. How-
ever, if buyNoMoreThanAmountB is set to True, the pro-
tocol ensures users receive no more than amountB of
tokenB. Thus, UDOM’s buyNoMoreThantokenB parameter
determines when an order is considered completely filled.
buyNoMoreThantokenB applies a cap on either amountS or
amountB, and allows users to express more granular trade
intentions than traditional buy/sell orders.

For example: with amountS = 10 and amountB = 2, the
rate r = 10/2 = 5. Thus the user is willing to sell 5 tokenS

for each tokenB. The ring-miner matches and finds the user
a rate of 4, allowing the user to receive 2.5 tokenB instead
of 2. However, if the user only wants 2 tokenB and set the
buyNoMoreThanAmountB flag to True, the LPSC performs
the transaction at a rate of 4 and the user sells 4 tokenS for
each tokenB, effectively saving 2 tokenS. Keep in mind this
does not take into account mining fees (See section 8.1).

Indeed, if we use

Order(amountS,tokenS,

amountB,tokenB,

buyNoMoreThantokenB)

to represent an order in a simplified form, then for
ETH/USD markets on a traditional exchange, traditional
buy-sell modeling can express the 1st and the 3rd order
below, but not the other two:

1. Sell 10 ETH at price of 300 USD/ETH. This order can
expressed as: Order(10, ETH, 3000, USD, False).

2. Sell ETH at price of 300 USD/ETH to
get 3000 USD. This order can expressed as:
Order(10, ETH, 3000, USD, True).

3. Buy 10 ETH at price of 300 USD/ETH, This order can
expressed as: Order(3000, USD, 10, ETH, True).

4. Spend 3000 USD to buy as many ETH as possible at
price of 300 USD/ETH, This order can expressed as:
Order(3000, USD, 10, ETH, False).

7.2 Ring Verification

The Loopring Smart Contracts do not perform exchange
rate or amount calculations, but must receive and verify
what the ring-miners supply for these values. These cal-
culations are done by ring-miners for two main reasons:
(1) the programming language for smart contracts, such as
solidity[19] on Ethereum, does not have support for floating
point math, especially pow(x, 1/n) (calculating the n-th
root of a floating point number), and (2) it is desirable for
the computation to be made off-chain to reduce blockchain
computation and cost.

7.2.1 Sub-Ring Checking

This step prevents arbitrageurs from unfairly realizing all
the margin in an order-ring by implementing new orders
within it. Essentially, once a valid order-ring is found by a
ring-miner, it could be tempting to add other orders to the
order-ring to fully absorb the users’ margin (rate discounts).
As illustrated by figure 3 below, carefully calculated x1, y1,
x2 and y2 will make the product of all orders’ rate be exactly
1 so there will be no rate discount.

ORDER 2

owner: Y

amountS: 9B

amountB: 12C

ORDER 1

owner: X

amountS: 10000 A

amountB: 2 B

ORDER 3

owner: Z

amountS: 100 C

amountB: 160 A

ORDER 4

owner: M

amountS: x1 A

amountB: y1 B

ORDER 5

owner: addressM

amountS: x2 C

amountB: y2 A

Figure 3: An order-ring with sub-ring

This is zero-risk, zero-value add to the network, and is
considered unfair conduct by the ring-miner. To prevent
this, Loopring requires that a valid loop cannot contain any
sub-rings. To check this, the LPSC ensures a token cannot
be in a buy or sell position twice. In the above diagram, we
can see that token A is a sell token twice and a buy token
twice, which would be disallowed.

7.2.2 Fill Rate Checking

The exchange rate calculations in the order-ring are made
by ring-miners for reasons stated above. It is the LPSC
that must verify they’re correct. First, it verifies that the
buy rate the ring-miner can execute for each order is equal
to or less than the original buy rate set by the user. This
ensures the user gets at least the exchange rate they asked
for or better on the transaction. Once the exchange rates
are confirmed, the LPSC ensures that each order in the
order-ring shares the same rate discount. For instance, if
the discounted rate is γ, then the price for each order will
be:

r0→1 · (1− γ), r1→2 · (1− γ), r2→0 · (1− γ), and satisfy:

r0→1 · (1− γ) · r1→2 · (1− γ) · r2→0 · (1− γ) = 1 (3)

hence:

γ = 1− 1
3
√
r0→1 · r1→2 · r2→0

. (4)

If the transaction crosses n orders, the discount is:

γ = 1− 1

n

√

∏

n−1

i=0
ri
, (5)

where ri is the order turnover rate of i-th order. Obvi-
ously, only when the discount rate is γ ≥ 0, can these orders

6

be filled; and the i-th order (Oi)’s actual exchange rate is

r̂i = ri · (1− γ), r̂i ≤ ri.

Recall our prior example where Alice has 15 token A and
wants 4 token B for them, Bob has 10 token B and wants 30
token A for them. If token A is the reference, then Alice is
buying token B for 15

4
= 3.75A, while Bob is selling token B

for 30

10
= 3.00A. To calculate the discount: 150

120
= 1.25 thus

1

1.25
= 0.8 = (1− γ)2. Thus the exchange rate that renders

the trade equitable for both parties is
√
0.8 · 3.75 ≈ 3.3541

token A per token B.

Bob gives 4 token B and receives 13.4164 token A, more
than the 12 he was expecting for those 4 tokens. Alice
receives 4 token B as intended but gives only 13.4164 token A

in exchange, less than the 15 she was willing to give for those
4 tokens. Note, a portion of this margin will go towards
paying fees to incentivize miners (and wallets). (See section
8.1).

7.2.3 Fill Tracking & Cancellation

A user can partially or fully cancel an order by sending
a special transaction to the LPSC, containing the details
about the order and the amounts to cancel. The LPSC takes
that into account, stores the amounts to cancel, and emits
an OrderCancelled event to the network. The LPSC keeps
track of filled and cancelled amounts by storing their values
using the order’s hash as an identifier. This data is publicly
accessible and OrderCancelled / OrderFilled events are
emitted when it changes. Tracking these values is critical
for the LPSC during the order-ring settlement step.

LPSC also supports cancelling all orders for any trading
pair with the OrdersCancelled event and cancelling all
orders for an address with the AllOrdersCancelled event.

7.2.4 Order Scaling

Orders are scaled according to the history of filled and
cancelled amounts and the current balance of the senders’
accounts. The process finds the order with the smallest
amount to be filled according to the above characteristics
and uses it as a reference for scaling all transactions in the
order-ring.

Finding the lowest value order can help to figure out the
fill volume for each order. For instance, if the i-th order is
the lowest value order, then the number of tokens sold from
each order ŝ and number of tokens purchased b̂ from each
order can be calculated as:

ŝi = si, b̂
i = ŝi/r̂i, ;

ŝi⊕1 = b̂i, b̂i⊕1 = ŝi⊕1/r̂i⊕1;

ŝi⊕2 = b̂i⊕1, b̂i⊕2 = ŝi⊕2/r̂i⊕2;

...

where si is the balance left after orders are partially filled.

During implementation we can safely assume any order
in the order-ring to have the lowest value, then iterate
through the order-ring at most twice to calculate each
order’s fill volume.

Example: If the smallest amount to be filled compared to
the original order is 5%, all the transactions in the order-ring
are scaled down to 5%. Once the transactions are completed,
the order that was considered to have the smallest amount
remaining to be filled should be completely filled.

7.3 Ring Settlement

If the order-ring fulfills all the previous checks, the order-ring
can be closed, and transactions can be made. This means
that all n orders form a closed order-ring, connected as in
figure 4:

O1

O2O3

O4

O5 On

Figure 4: Ring Settlement

To make the transactions, the LPSC uses the
TokenTransferDelegate smart contract. The introduction
of such a delegate makes upgrading the protocol smart
contract easier as all orders only need to authorize this
delegate instead of different versions of the protocol.

For each order in the order-ring, a payment of tokenS
is made to the next or the previous order depending on the
implementation. Then the ring-miner’s fee is paid depending
on the fee model chosen by the ring-miner. Finally, once all
the transactions are made, a RingMined event is emitted.

7.3.1 Emitted Events

The protocol emits events that allow relays, order browsers,
and other actors to receive order book updates as efficiently
as possible. The emitted events are:

• OrderCancelled: A specific order has been can-
celled.

• OrdersCancelled: All orders of a trading pair from
an owning address have been cancelled.

• AllOrdersCancelled: All orders of all trading pairs
from an owning address have been cancelled.

• RingMined: An order-ring has been settled success-
fully. This event contains data related to each inner-
ring token transfer.

7

8 LRx Token

LRx is our generalized token notation. LRC is the Loopring
token on Ethereum, LRQ on Qtum, and LRN on NEO, etc.
Other LRx types will be introduced in the future as Loopring
is deployed on other public blockchains.

8.1 Fee Model

When a user creates an order, they specify an amount of
LRx to be paid to the ring-miner as a fee, in conjunction
with a percentage of the margin (marginSplitPercentage)
made on the order that the ring-miner can claim. This is
called the margin split. The decision of which one to choose
(fee or margin split) is left to the ring-miner.

A representation of the margin split:

TotalBuyAmount

OrderOriginalBuyAmount

AdditionalBuyAmount

MarginSplit

MarginOrderActualBuyAmount

Figure 5: A 60% Margin Split

If the margin on the order-ring is too small, a ring-
miner will choose the LRx fee. If, on the contrary, the
margin is substantial enough for the resulting margin split
to be worth much more than the LRx fee, a ring-miner will
choose the margin split. There is another proviso, however:
when the ring-miner chooses the margin split, they must
pay the user (order creator) a fee, which is equal to the LRx
the user would have paid to the ring-miner as a fee. This
increases the threshold of where the ring-miner will choose
the margin split to twice the LRx fee of the order, increasing
the propensity of the LRx fee choice. This allows ring-miners
to receive a constant income on low margin order-rings for
the tradeoff of receiving less income on higher margin order-
rings. Our fee model is based on the expectation that as the
market grows and matures, there will be fewer high margin
order-rings, thus necessitating fixed LRx fees as incentive.

We end up with the following graph:

y

x
2ff

f ExpectedMiningIncome

Figure 6: Loopring’s Fee Model

where f is the LRx fee, x is the margin split, y is the
mining income. y = max(f, x − f) as indicated by the
solid line; if the LRx fee for the order is 0, the equation
is y = max(0, x− 0) that simplifies to y = x as indicated by
the gray line.

The consequences are:

1. If the margin split is 0, ring-miners will choose the flat
LRx fee and are still incentivized.

2. If the LRx fee is 0, the gray line results and the income
is based on a general linear model.

3. When the margin split income is greater than 2x(LRx
fee), ring-miners choose the margin split and pay LRx
to the user.

It should be noted that if the LRx fee is non-zero,
no matter which option the ring-miner chooses, there will
always be a transfer of LRx between the ring-miner and the
order’s sender. Either the ring-miner earns the LRx fee, or
pays the LRx fee back to the sender to take the margin split.

Ring-miners will share a certain percentage of fees with
wallets. When a user places an order through a wallet and
gets filled, the wallet is rewarded with a portion of the fees or
margin split. Although this is modular, and unique business
models or implementations are possible, our inclination is for
wallets to receive approximately 20%-25% of earned fees.
Wallets represent a primary target for Loopring protocol
integration as they have the user base, but little or no source
of income.

8.2 Decentralized Governance

At its root, the Loopring protocol is a social protocol in
the sense that it relies on coordination amongst members to
operate effectively towards a goal. This is not dissimilar to
cryptoeconomic protocols at large, and indeed, its usefulness
is largely protected by the same mechanisms of coordina-
tion problems [20], grim trigger equilibrium, and bounded
rationality. To this end, LRx tokens are not only used to
pay fees, but also to align the financial incentives of the
various network participants. Such alignment is necessary
for broad adoption of any protocol, but is particularly acute
for exchange protocols, given that success rests largely on
improving liquidity in a robust decentralized ecosystem.

LRx tokens will be used to effectuate protocol updates
through decentralized governance. Smart contract updates
will, in part, be governed by token holders to ensure
continuity and safety, and to attenuate the risks of siphoned
liquidity through incompatibility. Given that smart con-
tracts cannot be altered once deployed, there is a risk that
dApps or end users continue to interact with deprecated
versions and preclude themselves from updated contracts.
Upgradeability is crucial to the protocol’s success as it must
adapt to market demands and the underlying blockchains.

8

Decentralized governance by LRx stakeholders will allow for
protocol smart contract updates without disrupting dApps
or end users, or relying too heavily on smart contract
abstraction. LRx tokens have a fixed supply, and in the case
of LRC, certain percentages are frozen from the Loopring
Foundation, and allocated to community-purposed funds
[21].

However, LRx token owners are not the only stakeholders
to consider in steering the protocol’s direction: relays/ring-
miners, wallets, developers, and others are an integral part
of the ecosystem and their voice must be heard. In fact,
given that these agents need not hold any LRx to perform
their respective roles (since traditional makers/takers and
market-makers are nonexistent, initial token reserves are
not mandatory) we must allow alternative methods for their
interests to be respected. Furthermore, ”simple” token-
based voting, both on-chain and off, is an imperfect salve
for disagreement, as low voter turnout and token ownership
concentration pose risks. Thus, the goal is to implement
a governance model that is built in layers, and rests on a
shared knowledge that some set of decision-making processes
is the norm. This can be facilitated by coordination institu-
tions that offer signals from a diverse set of participants, and,
perhaps, from pre-established protocol focal points. As this
comes to fruition, the Loopring Foundation will inevitably
evolve from protocol developers into protocol stewards.

9 Fraud and Attack Protections

9.1 Front-running Prevention

In decentralized exchanges, front-running is when someone
tries to copy another node’s trade solution, and have it
mined before the original transaction that is in the pending
transaction pool (mempool). This can be achieved by
specifying a higher transaction fee (gas price). The major
scheme of front-running in Loopring (and any protocol for
order-matching) are order-filch: when a front-runner steals
one or more orders from a pending order-ring settlement
transaction; and, specific to Loopring: when a front-runner
steals the entire order-ring from a pending transaction.

When a submitRing transaction is not confirmed and
is still in the pending transaction pool, anyone can easily
spot such a transaction and replace minerAddress with
their own address (the filcherAddress), then they can re-
sign the payload with filcherAddress to replace the order-
ring’s signature. The filcher can set a higher gas price and
submit a new transaction hoping block-miners will pick his
new transaction into the next block instead of the original
submitRing transaction.

Previous solutions to this problem had important down-
sides: requiring more transactions and thus costing ring-
miners more gas; and taking at least twice the blocks to
settle an order-ring. Our new solution, Dual Authoring[22],
involves the mechanism of setting up two levels of authoriza-
tion for orders - one for settlement, and one for ring-mining.

Dual Authoring process:

1. For each order, the wallet software will generate a
random public-key/private-key pair, and put the key
pair into the order’s JSON snippet. (An alternative is
to use the address derived from the public-key instead
of the public-key itself to reduce byte size. We use
authAddr to represent such an address, and authKey

to represent authAddr’s matching private-key).

2. Compute the order’s hash with all fields in the order
except r, v, s, and authKey), and sign the hash using
the owner’s private-key (not authKey).

3. The wallet will send the order together with the
authKey to relays for ring-mining. Ring-miners will
verify that authKey and authAddr are correctly paired
and the order’s signature is valid with respect to owner
address.

4. When an order-ring is identified, the ring-miner will
use each order’s authKey to sign the ring’s hash,
minerAddress, and all the mining parameters. If an
order-ring contains n orders, there will be n signatures
by the n authKeys. We call these signatures the
authSignatures. The ring-miner may also need to
sign the ring’s hash together with all mining parame-
ters using minerAddress’s private-key.

5. The ring-miner calls the submitRing function with
all the parameters, as well as all the extra
authSignatures. Notice that authKeys are NOT part
of the on-chain transaction and thus remain unknown
to parties other than the ring-miner itself.

6. The Loopring Protocol will now verify each
authSignature against the corresponding authAddr

of each order, and reject the order-ring if any
authSignature is missing or invalid.

The result is that now:

• The order’s signature (by the private-key of the owner
address) guarantees the order cannot be modified,
including the authAddr.

• The ring-miner’s signature (by the private-key of the
minerAddress), if supplied, guarantees nobody can
use his identity to mine an order-ring.

• The authSignatures guarantees the entire order-ring
cannot be modified, including minerAddress, and no
orders can be stolen.

Dual Authoring prevents ring-filch and order-filch while
still ensuring the settlement of order-rings can be done
in one single transaction. In addition, Dual Authoring
opens doors for relays to share orders in two ways: non-
matchable sharing and matchable sharing. By default,

9

Loopring operates an OTC model and only supports limit-
price orders, meaning that orders’ timestamps are ignored.
This implies that front-running a trade has no impact on
the actual price of that trade, but does impact whether it
gets executed or not.

10 Other Attacks

10.1 Sybil or DOS Attack

Malicious users – acting as themselves or forged identities –
could send a large amount of small orders to attack Loopring
nodes. However, since we allow nodes to reject orders based
on their own criteria – which they may hide or reveal – most
of these orders will be rejected for not yielding satisfying
profit when matched. By empowering relays to dictate how
they manage orders, we do not see a massive tiny order
attack as a threat.

10.2 Insufficient Balance

Malicious users could sign and spread orders whose order
value is non-zero but whose address actually has zero
balance. Nodes could monitor and notice that some orders
actual balance is zero, update these order states accordingly
and then discard them. Nodes must spend time to update
the status of an order, but can also choose to minimize the
effort by, for example, blacklisting addresses and dropping
related orders.

11 Summary

The Loopring protocol sets out to be a foundational layer
for decentralized exchange. In so doing, it has profound
repurcussions in how people exchange assets and value.
Money, as an intermediate commodity, facilitates or replaces
barter exchange and solves the double coincidence of wants
problem [23], whereby two counterparties must desire each
other’s distinct good or service. Similarly, Loopring protocol
aims to dispense of our dependencies on coincidence of wants
in trading pairs, by using ring matching to more easily
consummate trades. This is meaningful for how society and
markets exchange tokens, traditional assets, and beyond.
Indeed, just as decentralized cryptocurrencies pose threat
to a nation’s control over money, a combinatorial protocol
that can match traders (consumers/producers) at scale, is a
theoretical threat to the concept of money itself.

Protocol benefits include:

• Off-chain order management and on-chain settlement
means no sacrifice in performance for security.

• Greater liquidity due to ring-mining and order sharing.

• Dual Authoring solves the pernicious problem of front
running faced by all DEXs and their users today.

• Free, public smart contracts enable any dApp to build
or interact with the protocol.

• Standardization among operators allows for network
effects and an improved end user experience.

• Network maintained with flexibility in running order
books and communicating.

• Reduced barriers to entry means lower costs for nodes
joining the network and end users.

• Anonymous trading directly from user wallets.

12 Acknowledgements

We would like to express our gratitude to our mentors,
advisers and to the many people in the community that
have been so welcoming and generous with their knowledge.
In particular, we would like to thank Shuo Bai (from
ChinaLedger); Professor Haibin Kan; Alex Cheng, Hongfei
Da; Yin Cao; Xiaochuan Wu; Zhen Wang, Wei Yu, Nian
Duan, Jun Xiao, Jiang Qian, Jiangxu Xiang, Yipeng Guo,
Dahai Li, Kelvin Long, Huaxia Xia, Jun Ma, and Encephalo
Path for reviewing and providing feedback on this project.

References

[1] Vitalik Buterin. Ethereum: a next generation smart
contract and decentralized application platform (2013).
URL {http://ethereum. org/ethereum. html}, 2017.

[2] Gavin Wood. Ethereum: A secure decentralised gen-
eralised transaction ledger. Ethereum Project Yellow
Paper, 151, 2014.

[3] Patrick Dai, Neil Mahi, Jordan Earls,
and Alex Norta. Smart-contract value-
transfer protocols on a distributed mobile
application platform. URL: https://qtum.
org/uploads/files/cf6d69348ca50dd985b60425ccf282f3.
pdf, 2017.

[4] Viktor Atterlönn. A distributed ledger for gamification
of pro-bono time, 2018.

[5] Hernando de Soto. The Mystery Of Capital. Basic
Books, 2000.

[6] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. 2008.

[7] Fabian Schuh and Daniel Larimer. Bitshares 2.0:
Financial smart contract platform, 2015.

[8] Bancor protocol. URL https://bancor.network/, 2017.

[9] Yaron Velner Loi Luu. Kybernetwork: A
trustless decentralized exchange and payment
service. https://kr.kyber.network/assets/

KyberNetworkWhitepaper.pdf, Accessed: 2018-03-05.

10

[10] Fortune. How to steal $500 million in
cryptocurrency. http://fortune.com/2018/01/

31/coincheck-hack-how, Accessed: 2018-03-30.

[11] Robert McMillan. The inside story of mt. gox, bitcoins
460 dollar million disaster. 2014.

[12] Sylvain Ribes. Chasing fake volume: a crypto-plague.
https://medium.com/@sylvainartplayribes/

chasing-fake-volume-a-crypto-plague-ea1a3c1e0b5e,
Accessed: 2018-03-10.

[13] Rossella Agliardi and Ramazan Genay. Hedging
through a limit order book with varying liquidity. 2014.

[14] Will Warren and Amir Bandeali. 0x: An open protocol
for decentralized exchange on the ethereum blockchain,
2017.

[15] Iddo Bentov and Lorenz Breidenbach. The cost of
decentralization. http://hackingdistributed.com/

2017/08/13/cost-of-decent/, Accessed: 2018-03-05.

[16] Daniel Wang. Coinport’s implemenation of udom.
https://github.com/dong77/backcore/blob/

master/coinex/coinex-backend/src/main/scala/

com/coinport/coinex/markets/MarketManager.

scala, Accessed: 2018-03-05.

[17] Supersymmetry. Remarks on loopring.
https://docs.loopring.org/pdf/

supersimmetry-loopring-remark.pdf, Accessed:
2018-03-05.

[18] Fabian Vogelsteller. Erc: Token standard. URL
https://github.com /ethereum /EIPs /issues /20, 2015.

[19] Chris Dannen. Introducing Ethereum and Solidity.
Springer, 2017.

[20] Vitalik Buterin. Notes on blockchain gover-
nance. https://vitalik.ca/general/2017/12/17/

voting.html, Accessed: 2018-03-05.

[21] Loopring Foundation. Lrc token documents.
https://docs.loopring.org/English/token/,
Accessed: 2018-03-05.

[22] Daniel Wang. Dual authoring looprings solution to
front-running. URL https://medium.com/loopring-
protocol/dual-authoring-looprings-solution-to-front-
running-d0fc9c348ef1, 2018.

[23] Nick Szabo. Menger on money: right and wrong.
http://unenumerated.blogspot.ca/2006/06/

menger-on-money-right-and-wrong.html, Accessed:
2018-03-05.

Appendices

Appendix A Loopring Implemented on EVM

LoopringProtocolImpl

LoopringProtocol

NameRegistry TokenRegistry

TokenTransferDelegateTransferableMultsig

- Validates order-rings
- Transfers tokens for settlement
- Emits events

- Registers wallets and relays

- Defines interfaces and events

- Registers ERC20/ERC223 tokens

- Transfers tokens on behalf of users- Enables multisignature
ownership

Figure 7: Smart Contracts

11

Appendix B Deployment

B.1 Ethereum

The following smart contracts have been deployed on Ethereum mainnet:

• LRC: 0xEF68e7C694F40c8202821eDF525dE3782458639f

• TokenRegistry: 0xa21c1f2AE7f721aE77b1204A4f0811c642638da9

• TokenTransferDelegate: 0x7b126ab811f278f288bf1d62d47334351dA20d1d

• NameRegistry: 0xd181c1808e3f010F0F0aABc6Fe1bcE2025DB7Bb7

• LoopringProtocolImpl: 0x0B48b747436f10c846696e889e66425e05CD740f

B.2 Qtum

The following smart contracts have been deployed on Qtum mainnet:

• LRQ: 2eb2a66afd4e465fb06d8b71f30fb1b93e18788d

• TokenRegistry: c89ea34360258917daf3655f8bec5550923509b3

• TokenTransferDelegate: 60b3fa7f461664e4dafb621a36ac2722cc680f10

• NameRegistry: e26a27d92181069b25bc7283e03722f6ce7678bb

• LoopringProtocolImpl: 5180bb56b696d16635abd8dc235e0ee432abf25d

12

