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Abstract—Existing cryptocurrencies and smart contract plat-
forms are known to have scalability issues, i.e., the number of
transactions they are capable of processing per second is limited,
usually less than 10. As the number of applications utilizing
public cryptocurrencies and smart contract platforms grow, the
demand for processing high transaction rates in the order of
hundreds and thousands of Tx/s is increasing.

In this work, we present ZILLIQA— a new blockchain platform
that is designed to scale in transaction rates. As the number of
miners in ZILLIQA increases, its transaction rates are expected to
increase. At Ethereum’s present network size of 30,000 miners,
ZILLIQA would expect to process about a thousand times the
transaction rates of Ethereum. The cornerstone in ZILLIQA’s
design is the idea of sharding — dividing the mining network
into smaller shards each capable of processing transactions in
parallel.

ZILLIQA further proposes an innovative special-purpose smart
contract language and execution environment that leverages the
underlying architecture to provide a large scale and highly
efficient computation platform. The smart contract language in
ZILLIQA follows a dataflow programming style which makes it
ideal for running large-scale computations that can be easily
parallelized. Examples include simple computations such as
search, sort and linear algebra computations, to more complex
computations such as training neural nets, data mining, financial
modeling, scientific computing and in general any MapReduce
task.

I. INTRODUCTION

Cryptocurrencies and smart contract platforms are becom-

ing a shared computational resource. One could view these

platforms as a new generation of computers that synchronize

over thousands of individual computers. However, existing

cryptocurrencies and smart contract platforms have widely

recognized limitations in scaling. Average transaction rates in

Bitcoin [1], Ethereum [2], and related cryptocurrencies have

been limited to below 10 (usually about 3-7) transactions

per second (Tx/s). As the number of applications utilizing

public cryptocurrencies and smart contract platforms grow, the

demand for processing high transaction rates in the order of

hundreds of Tx/s is increasing. A global payment network

would likely require tens of thousands of Tx/s in capacity.

Can we build a decentralized and open blockchain platform

capable of processing at that scale?

The limitations in scaling up existing protocols are some-

what fundamental — they are rooted in the design of the

consensus and network protocols. Therefore, even though re-

engineering the parameters of the existing protocols in say

Bitcoin or Ethereum (e.g., the block size or the block rate)

may show some speedup, to support applications that need

processing of thousands of Tx/s however requires rethinking

the underlying protocols from scratch.

We present ZILLIQA— a new blockchain platform that is

designed to scale in transaction rates. As the number of miners

in ZILLIQA increases, its transaction rates are expected to

increase as well. Specifically, ZILLIQA’s design allows its

transaction rates to roughly double with every few hundred

nodes added to its network. As of this writing, the Ethereum

mining network is over 30,000 nodes. At Ethereum’s present

capacity, ZILLIQA would expect to process about a thousand

times the transaction rates of Ethereum.

ZILLIQA is a redesign from scratch and has been under

research and development for over 2 years. The cornerstone

in ZILLIQA’s design is the idea of sharding — dividing the

mining network into smaller consensus groups called shards

each capable of processing transactions in parallel. If the

mining network of ZILLIQA is say 8000 miners, ZILLIQA

automatically creates 10 sub-networks each of size 800 miners,

in a decentralized manner without a trusted co-ordinator. Now,

if one sub-network can agree on a set of (say) 100 transactions

in one time epoch, then 10 sub-networks can agree on a total

of 1000 transactions in aggregate. The key to aggregating

securely is to ensure that sub-networks process different trans-

actions (with no overlaps) without double-spending.

The assumptions are similar to existing blockchain-based

solutions. We assume that the mining network will have a frac-

tion of malicious nodes/identities with a total computational

power that is a fraction (< 1/4) of the complete network.

It is based on a standard proof-of-work scheme, however, it

has a new two-layer blockchain structure. It features a highly

optimized consensus algorithm for processing shards.

ZILLIQA further comes with an innovative special-purpose

smart contract language and execution environment that lever-

age the underlying architecture to provide a large scale and

highly efficient computation platform. The smart contract

language in ZILLIQA follows a dataflow programming style,

where the smart contract can be represented as a directed

graph. Nodes in the graph are operations or functions, while
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an arc between two nodes represent the output of the first and

the input to the second. A node gets activated (or operational)

as soon as all of its inputs become valid and thus a dataflow

contract is inherently parallel and suitable for decentralized

systems such as ZILLIQA.

The sharded architecture is ideal for running large-scale

computations that can be easily parallelized. Examples include

simple computations such as search, sort and linear algebra

computations, to more complex computations such as train-

ing a neural net, data mining, financial modeling, scientific

computing and in general any MapReduce task among others.

This document outlines the technical design of ZILLIQA

blockchain protocol. ZILLIQA has a new, conceptually clean

and modular design. It has six layers: the cryptographic layer

(Section III), data layer (Section IV), the network layer (Sec-

tion V), the consensus layer (Section VI), the smart contract

layer (Section VII) and the incentive layer (Section VIII).

Before we present the different layers, we first discuss the

system settings, underlying assumptions and threat model

in Section II.

II. SYSTEM SETTING AND ASSUMPTIONS

Entities in ZILLIQA. There are two main entities in

ZILLIQA: users and miners. A user is an external entity

who uses ZILLIQA’s infrastructure to transfer funds or run

smart contracts. Miners are the nodes in the network who

run ZILLIQA’s consensus protocol and get rewarded for their

service. In the rest of this whitepaper, we interchangeably use

the terms miner and node.

ZILLIQA’s mining network is further divided into several

smaller networks referred to as a shard. A miner is assigned

to a shard by a set of miners called DS nodes. This set of DS

nodes is also referred to as the DS committee. Each shard and

the DS committee has a leader. The leaders play an important

role in the ZILLIQA’s consensus protocol and for the overall

functioning of the network.

Each user has a public, private key pair for a digital signa-

ture scheme and each miner in the network has an associated

IP address and a public key that serves as an identity.

Intrinsic token. ZILLIQA has an intrinsic token called

Zillings or ZILs for short. Zillings give platform usage rights

to the users in terms of using it to pay for transaction

processing or run smart contracts. Throughout this whitepaper,

any reference to amount, value, balance or payment, should

be assumed to be counted in ZIL.

Adversarial model. We assume that the mining network at

any point of time has a fraction of byzantine nodes/identities

with a total computational power that is at most f < n
4 of the

complete network, where 0 ≤ f < 1 and n is the total size

of the network. The factor 1
4 is an arbitrary constant bounded

away from 1
3 selected as such to yield reasonable constant

parameters. We further assume that honest nodes are reliable

during protocol runs, and failed or disconnected nodes are

counted in the byzantine fraction.

Byzantine nodes can deviate from the protocol, drop or

modify messages and send different messages to honest nodes.

Further, all byzantine nodes can collude together. We assume

that the total computation power of the byzantine adversaries

is still confined to standard cryptographic assumptions of

probabilistic polynomial-time adversaries.

We however assume that messages from honest nodes (in

the absence of network partition) can be delivered to honest

destinations after a certain bound δ, but δ may be time-varying.

The bound δ is used to ensure liveness but not safety [3]. In

case such timing and connectivity assumptions are not met, it

becomes possible for byzantine nodes to delay the messages

significantly (simulating a gain in computation power) or

worse “eclipse” the network [4]. In the event of network

partition, as dictated by the CAP theorem, one can only choose

between consistency and availability [5]. In ZILLIQA, we

choose to be consistent and sacrifice availability.

III. CRYPTOGRAPHIC LAYER

The cryptographic layer defines the cryptographic primi-

tives used in ZILLIQA. Similar to several other blockchain

platforms, ZILLIQA relies on elliptic curve cryptography for

digital signatures and a memory-hard hash function for proof-

of-work (PoW).

Throughout this whitepaper, we extensively use SHA3 [6]

hash function to present our design. SHA3 is originally based

on Keccak [7] which is widely used in different blockchain

platforms in particular Ethereum. In the near future, we may

switch to Keccak to enable better interoperability with other

platforms.

A. Schnorr Signature

ZILLIQA employs Elliptic Curve Based Schnorr Signature

Algorithm (EC-Schnorr) [8] as the base signing algorithm.

We instantiate the scheme with secp256k1 curve [9]. The

same curve is currently used in Bitcoin and Ethereum but for

a different signing algorithm called ECDSA. Choosing EC-

Schnorr over ECDSA has several benefits that we discuss

below:

1) Non-malleability: Informally put, the non-malleability

property means that given a set of signatures generated on

a message using a private key, it should be hard for an

adversary to produce a new signature for the same message

that is valid for the corresponding public key. Unlike ECDSA

which is malleable, EC-Schnorr has been proven to be non-

malleable [10].

2) Multisignature: A multisignature scheme allows multi-

ple signers to “aggregate” their signatures on a given message

into a single signature which can be authenticated against a

single public key that “aggregates” the keys of all the autho-

rized parties. While, EC-Schnorr is natively a multisignature

scheme (see [11]), ECDSA allows creating multisignatures but

in a less flexible way.

ZILLIQA uses EC-Schnorr based multisignatures to reduce

the signature size when multiple signatures are required on a

message. Smaller signatures are particularly important in our

consensus protocol where multiple parties need to agree on a

data by signing it.
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3) Speed: EC-Schnorr is faster than ECDSA since the latter

requires computing an inverse modulo a large number. No

inversion is required in EC-Schnorr.

The exact EC-Schnorr key generation, signing and verifica-

tion procedures are given in Appendix A. In the Appendix, we

also present how EC-Schnorr can be used as a multisignature

scheme.

B. Proof of Work

ZILLIQA uses PoW only to prevent Sybil attacks and

generate node identities. This is in contrast to many ex-

isting blockchain platforms (in particular Bitcoin [1] and

Ethereum [12]), where PoW is used to reach distributed

consensus. ZILLIQA employs Ethash [13], the PoW algorithm

used in Ethereum 1.0.

Ethash is a memory hard hash function designed to make it

easy to mine with GPUs but hard with specialized computing

hardware such as ASICs. To achieve this, Ethash computation

requires a considerable amount of memory (in GBs) and I/O

bandwidth such that the function cannot be invoked in parallel

on specialized computing hardware.

Roughly speaking, Ethash takes a data (for instance a block

header) and a nonce of 64-bits as inputs and generates a 256-

bits digest. The algorithm consists of four subroutines which

are run in the given order:

1) Seed generation: Seed is a SHA3-256 digest which is

updated after every 30000 blocks called an epoch. For

the first epoch it is the SHA3-256 hash of a series of

32 bytes of zeros. For every other epoch it is always the

SHA3-256 hash of the previous seed.

2) Cache generation: The seed is used to generate a pseu-

dorandom cache using SHA3-512. The size of the cache

linearly increases with epoch. The initial size of the cache

is 16 MB.

3) Dataset generation: The cache is then used to generate

a dataset, where each “item” in the dataset depends on

only a small number of items in the cache. The dataset

is updated once every epoch so that the miners do not

have to make changes to it very frequently. The size of

the dataset also increases linearly with epoch. The initial

size of the dataset is 1 GB.

4) Mining and Verification: Mining involves grabbing ran-

dom slices of the dataset and hashing them together.

Verification uses the cache to regenerate the specific

pieces of the dataset needed to compute the hash.

IV. DATA LAYER

Broadly speaking, the data layer defines the data that

constitutes the global state of ZILLIQA. By extension, it also

defines the data needed by the different entities in ZILLIQA

to update its global state.

A. Accounts, Addresses and State

ZILLIQA is an account-based system (as Ethereum). There

are two types of accounts: normal account and contract

account. A normal account is created by generating an EC-

Schnorr private key. A contract account is created by another

account.

Each account is identified by an address derived differently

depending on its type. The address for a normal account is

derived from the account’s private key. For a given private

key sk, the address Anormal is a 160-bit value computed as:

Anormal = LSB160(SHA3-256(PubKey(sk))),

where, LSB160(·) returns the rightmost 160 bits of the input

and PubKey(·) returns the public key corresponding to the in-

put secret key. The address for a contract account is computed

from the address of its creator and how many transactions the

creator account has sent, aka account nonce (described below).

Acontract = LSB160(SHA3-256(address||nonce)),

where, address is the address of the creator account, and

nonce is the creator’s nonce value.

Each account (whether normal or contract) is associated

with an account state. The account state is a key, value store

and comprises of the following keys:

1) account nonce: (64 bits) A counter (initialized to

0) that counts the number of transactions sent from a

normal account. In case of a contract account, it counts

the number of contract creations made by the account.

2) balance: (128 bits) A non-negative value. Whenever

an account receives tokens from another account, the

received amount is added to the account’s balance.

When an account sends tokens to another account, the

balance is reduced by the appropriate amount.

3) code hash: (256 bits) This stores SHA3-256 digest

of the contract code. For a normal account it is the

SHA3-256 digest of the empty string.

4) storage root: (256 bits) Each account has a storage

which is again a key, value store with 256-bit keys and

256-bit values. storage root is a SHA3-256 digest

that represents this storage. For instance, if the storage is

a trie, then storage root is the digest of the root of

the trie.

The global state (state) of ZILLIQA is a mapping between

account addresses and account states. It is implemented using

a trie like data structure.

B. Transactions

A transaction is always sent from a normal account

address and it updates the global state of ZILLIQA. A

transaction has the following fields:

1) version (32 bits): Current version.

2) nonce (64 bits): A counter equal to the number of

transactions sent by the sender of this transaction.

3) to (160 bits): Destination account address. In case the

transaction creates a new contract account, this field is the

rightmost 160 bits of SHA3-256 of the empty string.

4) amount (128 bits): The transaction amount to be trans-

ferred to the destination address.
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5) gas price (128 bits): Gas is defined as the smallest

unit of computation. gas price is the amount that the

sender is willing to pay per unit of gas for computations

incurred in the transaction processing.

6) gas limit (128 bits): The maximum amount of gas

that should be used while processing the transaction.

7) code (unlimited): An expandable byte array that spec-

ifies the contract code. It is present only when the

transaction creates a new contract account.

8) data (unlimited): An expandable byte array that speci-

fies the data that should be used to process the transaction.

It is present only when the transaction invokes a call to

a contract at the destination address.

9) pubkey (264 bits): An EC-Schnorr public key that

should be used to verify the signature. The pubkey field

also determines the sending address of the transaction.

10) signature (512 bits): An EC-Schnorr signature on the

entire data.

Each transaction is uniquely identified by a

transaction ID — a SHA3-256 digest of the transaction

data that excludes the signature field.

C. Blocks

The ZILLIQA protocol introduces two types of blocks (and

thereby two blockchains): transaction blocks (TX-Block) and

directory service blocks (DS-Block). TX-Block contains the

transactions sent by users, while DS-Block contains metadata

about the miners who participate in the consensus protocol.

1) DS Blocks: A DS-Block has two parts: the header

and the signature. The header part of DS-Block has the

following fields:

1) version (32 bits): Current version.

2) previous hash (256 bits): The SHA3-256 digest of

its parent block header.

3) pubkey (264 bits): The public key of the miner who did

PoW on this block header.

4) difficulty (64 bits): This can be calculated from the

previous block’s difficulty and the block number. It stores

the difficulty of the PoW puzzle.

5) number (256 bits): The number of ancestor blocks. The

genesis block has a block number of 0.

6) timestamp (64 bits): Unix’s time() at the time of

creation of this block.

7) mixHash (256 bits): A digest calculated from nonce

which allows detecting DoS attacks.

8) nonce (64 bits): A solution to the PoW.

The signature part of DS-Block contains the following

two fields:

1) signature (512 bits): The signature is an EC-Schnorr

based multisignature on the DS-Block header signed by

DS nodes.

2) bitmap (1024 bits): It records which DS nodes partic-

ipated in the multisignature. We denote the bitmap by a

bit vector B, where, B[i] = 1 if the i-th node signed the

header else B[i] = 0.

DS-Blocks form a DS blockchain.

2) Transaction Blocks: As discussed earlier, a DS-Block

contains information on the nodes who reach consensus on

transactions. TX-Block stores information on which transac-

tions were agreed upon by the nodes in a DS-Block. Every

DS-Block is linked to multiple TX-Blocks. A TX-Block has

three parts: header, data and signature. The header

consists of the following fields:

1) type (8 bits): A TX-Block is of two types, micro

block (0x00) and final block (0x01). More on these

in Section V-D.

2) version (32 bits): Current version.

3) previous hash (256 bits): The SHA3-256 digest of

its parent block header.

4) gas limit (128 bits): Current limit for gas expenditure

per block.

5) gas used (128 bits): Total gas used by transactions in

this block.

6) number (256 bits): The number of ancestor blocks. The

genesis block has a block number of 0.

7) timestamp (64 bits): Unix’s time() at the time of

creation of this block.

8) state root (256 bits): It is a SHA3-256 digest

that represents the global state after all transactions are

executed and finalized. If the global state is stored as a

trie, then state root is the digest of the root of the

trie.

9) transaction root (256 bits): It is a SHA3-256

digest that represents the root of the Merkle tree that

stores all transactions that are present in this block.

10) tx hashes (each 256 bits): A list of SHA3-256 di-

gests of the transactions. The signature part of the

transaction is also hashed.

11) pubkey (264 bits): It is the EC-Schnorr public key of

the leader who proposed the block.

12) pubkey micro blocks (unlimited): It is a list of EC-

Schnorr public keys (each 264 bits in length). The list

contains the public keys of the leaders who proposed

transactions. The field is present only if it is a final block.

13) parent block hash (256 bits): It is the SHA3-256

digest of the previous final block header.

14) parent ds hash (256 bits): It is the SHA3-256

digest of its parent DS-Block header.

15) parent ds block number (256 bits): It is the par-

ent DS-Block number.

The data part of a TX-Block contains the set of transac-

tions. It has the following fields:

1) tx count (32 bits): The number of transactions in this

block.

2) tx list (unlimited): A list of transactions.

The signature part of a TX-Block contains an EC-

Schnorr based multisignature. It has the following two fields:

1) signature (512 bits): The signature is an EC-Schnorr

based multisignature on the TX-Block header signed by

a set of nodes. The signature is produced by a different

set of nodes depending on whether it is a micro block or
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a final block. Further details on the signatories is given

in Section V-D.

2) bitmap (1024 bits): It records which nodes participated

in the multisignature. We denote the bitmap by a bit

vector B, where, B[i] = 1 if the i-th node signed the

header else B[i] = 0.

The final blocks form the transaction blockchain. The

transaction blockchain does not include micro blocks.

V. NETWORK LAYER

ZILLIQA has been designed to scale in transaction rates. The

main idea is that of sharding, i.e., dividing the mining network

into small shards, each capable of processing transactions in

parallel. In this section, we present the idea of network and

transaction sharding.

A. Network Sharding

Network sharding, i.e., dividing the mining network into

smaller shards is a two-step process. First, a dedicated set of

nodes called the directory service committee (or DS commit-

tee) are elected which then shard the network and assign nodes

to their shard. We present these processes below in further

detail.

1) Directory Service Committee: To facilitate sharding of

the network, we first elect a group of nodes, called directory

service (DS) nodes. The DS nodes form a DS committee.

The election of DS nodes is based on a proof-of-work puzzle

that we refer to as PoW1. The algorithm for PoW1 is given

in Algorithm 1.

Algorithm 1: PoW1 for DS committee election.

Input: i: Current DS-epoch, DSi−1: Prev. DS committee
composition.

Output: header: DS-Block header.
1 On each competing node:

// get epoch randomness from the DS blockchain

// DBi−1: Most recent DS-Block before start of i-th epoch

2 r1 ← GetEpochRand(DBi−1)
// get epoch randomness from the transaction blockchain

// TBj : Most recent TX-Block before start of i-th epoch

3 r2 ← GetEpochRand(TBj)
// pk: node’s public key, IP = node’s IP address

4 nonce,mixHash← Ethash-PoW(pk,IP, r1, r2)
5 header← BuildHeader(nonce,mixHash, pk)

// header includes pk and nonce among other fields

// IP, header is multicast to members in the DS committee

6 MulticastToDSi−1(IP,header)
7 return header

Each node that has successfully produced a valid nonce

for PoW1 earlier than other nodes proposes a header for

a new DS-Block. Recall that a DS-Block has a header

and a signature part. When a node does a PoW1, it

only generates a DS-Block header. The header is then

multicast to the nodes in the DS committee. The DS committee

then runs a consensus on the proposed DS-Block header and

then builds a signature part. Once, 2f DS nodes have signed

the DS-Block header, it is committed to the DS blockchain.

After a successful bootstrapping phase, at any time, the

composition of the DS nodes is stipulated by a predefined

window of size n0. The most recent n0 nodes who have

successfully mined a DS-Block form the DS committee.

The average time between mining two consecutive DS-

Blocks is referred to as the DS-epoch. The value of

DS-epoch is set in a way to minimize the chances of two

competing blocks. At the start of a DS-epoch, a new DS

node joins the DS committee and the oldest member of the

DS committee is churned out. This fixes the size of the DS

committee to n0 during any DS-epoch. The newest member

of the DS committee then becomes the leader and leads the

consensus protocol for the epoch (see Section VI for the

consensus protocol). This further induces a strict ordering on

the members of the DS committee.

One can show that if the DS committee size is sufficiently

large (say above 800), then among the n0 members of the

committee at most 1
3 are byzantine with high probability.

2) Resolving Conflicts: Our consensus protocol (to be

presented in Section VI) does not permit forks in the DS

blockchain. The forks may occur when multiple nodes solve

the puzzle at roughly the same time. In order to resolve the

conflict, each DS node retrieves the nonce field from the

received headers and sorts them in the increasing order. Let

us suppose that the largest nonce for the i-th DS node is

ni
max.

The leader of the DS committee then proposes his own

header (that corresponds to the largest nonce he has seen)

and runs a consensus protocol to agree on the DS-Block

header. The i-th DS node then agrees to accept the proposed

header only if the corresponding nonce is larger than or equal

to ni
max. Once the consensus is reached, the signature part

of the DS-Block is built and the agreed upon winner then

becomes the leader.

3) Generating Shards: Once the DS committee is elected,

the actual sharding of the network can start. In order for a node

to participate in the underlying consensus protocol, it has to

perform a proof-of-work (PoW2). The sharding protocol is

repeated at the start of every DS-epoch. The algorithm for

PoW2 is given in Algorithm 2.

Algorithm 2: PoW2 for shard membership.

Input: i: Current DS-epoch, DSi: Current DS committee
composition.

Output: nonce, mixHash: outputs of Ethash-PoW
1 On each competing node:

// get epoch randomness from the DS blockchain

// DBi−1: Most recent DS-Block before start of i-th epoch

2 r ← GetEpochRand(DBi)
// pk: node’s public key, IP = node’s IP address

3 nonce,mixHash← Ethash-PoW(pk,IP, r)
// IP, header is multicast to members in the DS committee

4 MulticastToDSi(nonce,mixHash, pk,IP)
5 return nonce, mixHash

The computed valid nonce (and mixhash) for PoW2

is then multicast to the DS committee. The DS nodes will
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collectively accept just enough PoW solutions to be sharded

into l consensus committees or shards, each with n0 nodes to

run consensus. Once enough number of PoW2 solutions have

been received by the leader of the DS committee, he initiates a

consensus protocol to agree on the set of valid PoW2 solutions.

At the end of the consensus protocol, the leader generates an

EC-Schnorr multisignature signed by the DS nodes. In order

to proceed further, more than 2/3 of the DS nodes must have

agreed on the set of acceptable PoW2 solutions.

Sharding leverages a deterministic function to assign a node

to a shard. Let us assume that we need ℓ shards each having

n0 nodes. The nonce values are then sorted in the increasing

order and the first n0 nodes are assigned to the first shard, the

next n0 to the next shard and so on. The identity of the miner

who proposed the largest nonce within a shard is declared its

leader. This further induces a strict ordering on the members

of the shard.

One can also show that if n0 is sufficiently large (say above

800), then within each shard at most 1
3 are byzantine with high

probability.

B. Public Channel

The DS nodes publish certain information on the public

channel, including the identities and connection information

of the DS nodes, the list of nodes in each shard, as well as

the sharding logic for transactions (explained in Section V-D).

The public channel is untrusted and is assumed to be accessible

by all nodes. In our implementation, our broadcast primitive

implements such a public channel.

A user of our blockchain who would like to submit a

transaction for acceptance can then check the information

on sharding to get the shard responsible for processing her

transaction. The information published on the public channel

is expected to be signed by more than 2/3 of the DS nodes

that can be verified by any node or user.

C. New Nodes Joining ZILLIQA

For a new node to join the network, it can attempt to solve

PoW1 to become a DS node or a PoW2 to become a member

of a shard. To this end, it would need to obtain information

on the randomness required for a PoW1 or a PoW2 from the

blockchains. Once it obtains the randomness information, the

new node can submit its solution to the DS committee.

D. Transaction Sharding and Processing

As presented in Section V-A, network sharding creates

shards each capable of processing transactions in parallel.

In this section, we present how a particular transaction gets

assigned to a shard and how the transactions get processed.

For this purpose, we use the following abstraction: A
n
−→ B to

indicate a transaction of n ZIL from the sender’s account A

to the receiver’s account B.

1) Transaction Assignment: Any transaction say A
n
−→ B

gets processed by a single shard. Assuming that there are ℓ
shards numbered from 0 to ℓ − 1, a transaction is assigned

to a shard identified by the ⌊log2 ℓ⌋ + 1 rightmost bits of

the sender’s address, i.e., the address of the account A in

the example. As the account address is a 160-bit integer, ℓ
is bounded above as:

⌊log2 ℓ⌋+ 1 ≤ 160.

In practice though, ℓ will be smaller than 100.

Once the assigned shard is identified, the transaction is then

multicast to some nodes within the shard who then broadcast it

further. Once the transaction reaches the leader of the assigned

shard, it includes it in a TX-Block and runs the consensus

protocol.

Double spend (or replay attacks) can be easily detected

using the nonce present in every transaction. Recall that

each transaction has a nonce that counts the number of

transactions sent from the sender’s account. Once a transaction

gets into the transaction blockchain, the nonce is updated

in the account’s state and thereby in the global state. A

transaction with a nonce value smaller than or equal to the

current value in the global state gets rejected by the miners.

Sharding transactions based on the sender’s account address

natively allows shard members to detect double spend as every

transaction from a sender will be processed within the same

shard.

2) Transaction Processing: All the nodes within a commit-

tee can propose transactions. These transactions are sent to the

leader to run a consensus protocol on which set of transactions

forms the next TX-Block. Blocks proposed by each shard is

called a micro block (identified by the type marker 0x00). A

micro block contains an EC-Schnorr multisignature by more

than 2
3 nodes from the shard. The leader also builds a bitmap

B that identifies the public keys of the signers. B[i] = 1 if

the i-th member of the shard has signed the TX-Block header.

When a shard reaches a consensus on a TX-Block, its leader

multicasts the block header and the signature to some

of the DS nodes. The DS nodes then broadcast it within the

DS committee so that the block reaches its leader. The data

part of the block can be asynchronously sent to the nodes.

The DS committee then aggregates all blocks sent from

the shards, and runs another round of the consensus protocol

among themselves to agree on the final block. A final block

is a TX-Block identified by the type marker 0x01. A final

block contains an EC-Schnorr multisignature by more than
2
3n0 nodes from the DS committee. The leader in the DS

committee also builds a bitmap B that identifies the public

keys of the signers. B[i] = 1 if the i-th member of the DS

committee has signed the TX-Block header. The final block

header and the signature, is then multicast to some

nodes within each shard. The actual TX-Block data is not

sent by the DS nodes.

Within each shard the following steps are taken to process

the final block:

1) Each node in the shard verifies the EC-Schnorr multisig-

nature using the public keys of the DS nodes. If the

signatures are valid against more than 2
3n0 public keys

represented by the bitmap, then the nodes perform the

next checks.
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2) For each transaction hash included in the final block

header, the node checks whether its corresponding

transaction content is available. If the corresponding

transaction was proposed by the shard to which the node

belongs, then the hash of the transaction data is compared

with the hash contained in the final block header.

If the transaction was proposed by another shard, the

transaction data is shared asynchronously across shards.

3) Once the transaction data is available, the data part

of the final block is reconstructed and the TX-Block is

appended to the local transaction blockchain. The account

state and the global state are accordingly updated.

4) If the transaction content is not available, the node

temporarily invalidates the sending account of that trans-

action in its local view of accounts so that any other

pending transactions for this account are rejected until

the local transaction content can be brought in sync with

the global state. Such rejected transactions will have

to be retried by the sending node.

VI. CONSENSUS LAYER

As mentioned earlier, each shard and the DS committee have

to run a consensus protocol on the micro blocks and the final

blocks respectively. In this section, we present the consensus

layer which defines the consensus protocol to run within each

shard and the DS committee. In the rest of the discussion,

we refer to shards and the DS committees collectively as a

consensus group.

A. Practical Byzantine Fault Tolerance

The core of ZILLIQA’s consensus protocol relies on prac-

tical byzantine fault tolerance (PBFT) protocol proposed by

Castro and Liskov [3]. We however improve its efficiency by

using the idea of employing EC-Schnorr multisignature in the

PBFT protocol as developed in [14], [15]. Use of EC-Schnorr

multisignature lowers the normal case communication latency

from O(n2) to O(n) and reduces the signature size from O(n)
to O(1), where n is the size of the consensus group. In this

section, we present an overview of PBFT.

In PBFT, all the nodes within a consensus group are ordered

in a sequence, and it has one primary node (or leader) and the

others are referred to as backup nodes. Every round of PBFT

has three phases as discussed below:

1) Pre-prepare phase: In this phase, the leader announces

the next record (a TX-Block in our case) that the group

should agree on.

2) Prepare phase: Upon receiving the pre-prepare message,

every node validates its correctness and multicasts a

prepare message to all the other nodes.

3) Commit phase: Upon receiving more than 2
3n prepare

messages, a node multicasts a commit message to the

group Finally, a node waits for more than 2
3 commit

messages to ensure that a sufficient number of nodes

have made the same decision. Therefore, all honest nodes

accept the same valid record.

PBFT relies upon a correct leader to begin each phase and

proceed when the sufficient majority exists. In case the leader

is byzantine it can stall the entire consensus protocol. To

address this challenge, PBFT offers a view change protocol

to replace the byzantine leader with another one. If the

nodes do not see any progress for a bounded time, they can

independently announce the desire to change the leader. If a

quorum of more than 2
3n nodes decides that the leader is faulty,

then the next leader in a well-known schedule takes over.

Owing to the multicast of every node in the prepare/commit

phase, the communication complexity for PBFT in the normal

case is O(n2).

B. Improving Efficiency

Classical PBFT uses message authentication code (MAC)

for authenticated communication between nodes. As MAC

requires a secret key shared between every two nodes, the

nodes in one consensus group can agree on the same record

with a communication complexity of O(n2) per node. Due

to the quadratic complexity, PBFT becomes impractical when

the committee has over 20 nodes.

To improve the efficiency, we use the ideas inspired from

ByzCoin [15]:

1) We replace MAC with digital signatures to effectively

reduce the communication overhead to O(n).
2) In the meantime, to allow the other nodes to verify the

agreement, one typical way is to collect the signatures

from the honest majority and append them to the agree-

ment, thereby resulting in the agreement size linear in

the size of the consensus group. To improve on this, we

employ EC-Schnorr multisignatures to aggregate several

signatures into an O(1)-size multisignature.

We however cannot directly use the classical EC-Schnorr

multisignature scheme in the PBFT setting. This is because in

the classical setting all the signers agree on signing a given

message and the signature is valid only when all the signers

have signed the message. In the PBFT setting, we only require

that the message be signed by over 2
3n nodes in the consensus

group. One of the main modification required is to maintain

a bitmap B for the signers who participate in the signing

process. If the i-th node participated in the process, B[i] = 1,

else it is 0. The bitmap is build by the leader. The bitmap

can then be used by any verifier to validate the signature. The

resulting protocol is left in Appendix B.

C. ZILLIQA Consensus

In ZILLIQA, we use PBFT as the basis consensus protocol

and employ two rounds EC-Schnorr multisignatures to replace

the prepare and commit phases in PBFT. The different modi-

fications to the PBFT phases are explained below.

1) Pre-prepare phase: As in standard PBFT, the leader

distributes a TX-Block or a statement (signed by the

leader) to all the nodes in the consensus group.

2) Prepare phase: All honest nodes check the validity of

the TX-Block and the leader collects responses from

more than 2n
3 nodes. This guarantees that the statement
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proposed by the leader is safe and consistent with all

previous histories. The signature is generated using EC-

Schnorr multisignature. The leader also builds the bitmap

of nodes who signed the TX-Block.

3) Commit phase: To ensure that more than 2n
3 nodes

know the fact that more than 2n
3 nodes have verified the

TX-Block, we perform a second round of EC-Schnorr

multisignature. The statement being signed is the mul-

tisignature generated from the last round.

At the end of the three phases, the consensus is reached on

the TX-Block proposed by the leader.

D. Leader Change

In our consensus protocol, if the leader is honest, it can

drive the nodes in the consensus group to reach agreements on

new sets of transactions continuously. However, if the leader

is byzantine, it can intentionally delay or drop messages from

honest nodes, and slow down the protocol. To penalize such

malicious leaders, our protocol changes the leader of each

shard and the DS committee periodically. This prevents the

byzantine leader to stall the consensus protocol for an infinite

time. Since all the nodes are ordered, the next leader will been

chosen in a round robin manner.

In fact, the leader of a shard is changed after every micro

block and the leader of the DS committee is changed after

every final block. Let us assume that the size of the consensus

group is n, then within a DS-epoch, we allow a maximum

of n final blocks, each final block aggregating a maximum of

1 micro block per shard.

VII. SMART CONTRACT LAYER

ZILLIQA comes with an innovative special-purpose smart

contract language and execution environment that leverages

the underlying architecture to provide a large scale and highly

efficient computation platform. In this section, we present the

smart contract layer that employs a dataflow programming

architecture.

A. Computational Sharding using Dataflow Paradigm

ZILLIQA’s smart contract language and its execution plat-

form is designed to leverage the underlying network and

transaction sharding architecture. The sharded architecture is

ideal for running computation-intensive tasks in an efficient

manner. The key idea is the following: only a subset of the

network (such as a shard) would perform the computation. We

refer to this approach as computational sharding.

In contrast with existing smart contract architectures (such

as Ethereum), computational sharding in ZILLIQA takes a

very different approach towards how to process contracts.

In Ethereum, every full node is required to perform the

same computation to validate the outcome of the computation

and update the global state. Albeit being secure, such a

fully redundant programming model is prohibitively expen-

sive for running large-scale computations that can be easily

parallelized. Examples include simple computations such as

search, sort and linear algebra computations, to more complex

computations such as training a neural net, data mining,

financial modeling, etc.

ZILLIQA’s computational sharding approach relies on a

new smart contract language that is not Turing-complete but

scales much better for a multitude of applications. The smart

contract language in ZILLIQA follows a dataflow programming

style [16], [17]. In the dataflow execution model, a contract

is represented by a directed graph. Nodes in the graph are

primitive instructions or operations. Directed arcs between two

nodes represent the data dependencies between the operations,

i.e., output of the first and the input to the second. A node

gets activated (or operational) as soon as all of its inputs are

available. This stands in contrast to the classical von Neumann

execution model (as employed in Ethereum), in which an

instruction is only executed when the program counter reaches

it, regardless of whether or not it can be executed earlier.

The key advantage of employing a dataflow approach is

that more than one instruction can be executed at once. Thus,

if several nodes in the graph become activated at the same

time, they can be executed in parallel. This simple principle

provides the potential for massive parallel execution. To see

this, we present a simple sequential program in Figure 1a with

three instructions and in Figure 1b, we present its dataflow

variant. Under the von Neumann execution model, the program

would run in three time units: first computing A, then B and

finally C. The model does not capture the fact that A and B
can be independently computed. The dataflow program on the

other hand can compute these two values in parallel. The node

that performs addition gets activated as soon as A and B are

available.

A = x ∗ y
B = y/20
C = A+B

(a) A simple program.

x y 20

C

∗ /

+

A B

(b) Dataflow program.

Fig. 1: (a): A simple sequential program with three instructions

(b): Its dataflow variant.

When run on the ZILLIQA’s sharded network, each node in

the dataflow program can be eventually attributed to a single

shard or even a small subset of nodes within a shard. Hence the

architecture is ideal for any MapReduce style computational

tasks, where some node perform the mapping task while

another node can work as a reducer to aggregate the work

done by each mapper.

In order to facilitate the execution of a dataflow program,,

ZILLIQA’s smart contract language has the following features:

1) Operating over a virtual memory space shared globally

across the entire blockchain.
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2) Locking of intermediate cells in the virtual shared mem-

ory space during execution.

3) Checkpointing intermediate results during execution com-

mitted to blockchain.

B. Smart Security Budgeting

Apart form the benefits of parallelization offered from

the dataflow computation model, ZILLIQA further provides

a flexible security budgeting mechanism for computational

sharding. This feature is enabled by sharding the computa-

tional resources in the blockchain network via an overlay

above the consensus process. Computational sharding allows

users of ZILLIQA and applications running on ZILLIQA to

specify the sizes of consensus groups to compute for each

of the subtasks. Each consensus group will then be tasked to

compute the same subtask, and produce the results. The user

specifies the condition on acceptance of the results, e.g., all in

the consensus group must produce the same results, or 3/4 of

them must produce the same results, etc.

A user of the application running on ZILLIQA can budget

how much she wants to spend on computing and security,

respectively. In particular, a user running a particular deep

learning application may spend more gas fee on running more

of different neural network tasks than letting too many nodes

repeating the same computation. In this case, she can specify

a smaller consensus group for running each neural network

computation. On the other hand, a sophisticated financial

modeling algorithm that requires greater precision may task

consensus groups of larger number of nodes to compute the

critical portions of the algorithm to be more resilient against

potential tampering and manipulation of the results.

C. Scalable Applications: Examples

ZILLIQA aims to provide a platform to run highly scalable

computations in a multitude of fields such as data mining,

machine learning and financial modeling to name a few. Since

supporting efficient sharding of Turing-complete programs

is very challenging, and there exist public blockchains that

support Turing-complete smart contracts (e.g., Ethereum),

ZILLIQA focuses on specific applications with requirements

not met today.

1) Computation with parallelizable computation load:

Scientific computing over large data is a typical exam-

ple where one requires a large amount of distributed

computing power. Moreover, most of these computations

are highly parallelizable, examples include linear algebra

operations on large matrices, search in the sea of huge

amount of data and simulation on a large dataset among

others. ZILLIQA provides such computing tasks an inex-

pensive and short turnaround alternative. Moreover, with

the right incentive in place with computational sharding,

and security budgeting ZILLIQA can be leveraged as a

readily available and highly reliable resource for such

heavy computation load.

2) Train neural nets: With the ever growing popularity

and use cases of machine learning (in particular deep

learning), it is imperative to have an infrastructure that

allows deep learning models to train on large datasets. It

is well known that training on large datasets is crucial to a

model’s accuracy. To this end, ZILLIQA’s computational

sharding and dataflow language will be particularly useful

to build machine learning applications. It will serve as

an infrastructure that may run tools like TensorFlow1 by

tasking groups of ZILLIQA nodes to independently per-

form different computations such as computing gradients,

apply activation function, compute training loss, etc.

3) Application with high complexity and high precision

algorithms: Different from the applications mentioned

above, some applications, such as computations over

financial models, may require high precision. Any minor

deviation in one part of the computation may incur

heavy losses in investments. Such applications can task

consensus groups of larger number of nodes in ZILLIQA

to allow them to cross-check the computational results

of each other. The key challenge in offloading the com-

putational tasks of such financial modeling algorithms to

a public platform, such as ZILLIQA, is the concern for

data privacy and intellectual property of the algorithms.

To begin with, we envision certain well known portion of

such computation can be placed to ZILLIQA for efficient

and secure computation first, while the future research

and development of ZILLIQA will further strengthen the

protection of data privacy and intellectual property for

such applications.

VIII. INCENTIVE LAYER

A. Token Supply

ZILLIQA has a finite supply of 21 billion ZILs. The smallest

unit being 10−12 part of a ZIL. Each final TX-Block comes

with a block reward that generates new tokens. The block

reward will be spread over a period of 10 years decreasing

over time. We aim to mine roughly 80% of the tokens in the

first 4 years and the remaining 20% in the next 6 years. The

token emission will be “smooth” in the sense that the block

reward does not reduce drastically after a certain number of

blocks. The smooth reduction in the block reward means that

the network hashrate can be expected to be stable as the reward

reduces over gradually over time.

After 10 years, we expect to have reached significant scale

both in terms of the number of nodes in the network and users

executing transactions. By then, we expect the market to have

stabilized upon certain rates of transaction fees to fully sustain

the running of the network without a need for new tokens

entering the system as rewards.

B. Incentivizing Miners

Miners reach consensus on transactions, process them, per-

form computations as per the smart contract and update the

global state. Miners are hence incentivized by requiring the

sender of each transaction to pay some gas upfront.

1https://www.tensorflow.org/
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Recall that each final TX-Block aggregates at most one

micro block from each shard. Each micro TX-Block contains a

gas used field that stores the total gas used by transactions

in the block. Each final TX-Block also has a gas used field

that is a sum of all the gas used field of each micro TX-

Block. Once a TX-Block is proposed, the corresponding gas

used and the block reward is almost equitably distributed

among 1) the leaders of the shards who proposed one micro

block and 2) the leader of the DS committee who proposed

the final. In case the equitable distribution is not possible, the

distribution is slightly biased towards the leader of the DS

committee. Hence, if the reward is m and the total number

of stake holders for a reward is n, then the leader of each

shard gets ⌊m
n
⌋, while, the leader of the DS committee gets

m− n · ⌊m
n
⌋.

As the leader of each shard is changed once a new micro

block is proposed, every member of the shard gets rewarded.

Similarly, as the leader of the DS committee is changed after

every final block, every member of the DS committee is also

rewarded.

IX. RELATED WORK

ZILLIQA is developed upon the ideas of Bitcoin-NG [18],

collective signing (CoSi) [14], ByzCoin [15], Elastico [19] and

OmniLedger [20].

Bitcoin-NG first proposed the idea to decouple leader elec-

tion and his block proposals within Bitcoin. First, a leader

is elected by mining a keyblock who can then mint many

microblocks within the 10 minute block interval. The idea was

further used in ByzCoin [15].

The idea of network and transaction sharding for a Bit-

coin like system was first proposed in [19]. However, net-

work/transaction sharding alone cannot solve the scalability

issues as each shard needs to sign a TX-Block which makes

the total number of signatures linear in the number of signers.

This eventually results in a large block size and becomes a

bottleneck during the broadcast/multi-cast.

Multisignatures [11] provides a solution to the above prob-

lem. CoSi [14] uses an EC-Schnorr multisignature scheme to

design a protocol for collective signing. CoSi was proposed to

work in a much less hostile environment than that of a public

blockchain with byzantine nodes. With several significant

enhancements we develop for the CoSi scheme, we derive a

secure scheme and apply it to ZILLIQA.

Several other proposals have surfaced to sidestep the in-

herent scalability limitation of existing blockchain protocols,

for instance, re-parameterizing the original Bitcoin protocol

(e.g. increasing block sizes), moving as much computation off-

chain (e.g. micropayment channels and lightening networks),

creating hierarchy of blockchains (e.g. sidechains). None of

these protocols directly make the blockchain protocol itself

more scalable. ZILLIQA targets the heart of the scalability

problem – its blockchain.

ZILLIQA can be seen as an extension of ByzCoin and Om-

niLedger with several security and performance optimizations.

ZILLIQA also proposes a smart contract platform not available

in ByzCoin/OmniLedger.

ZILLIQA’s smart contract platform takes a different ap-

proach when compared with Ethereum. ZILLIQA’s smart

contract platform leverages the underlying sharding architec-

ture and is based on dataflow programming. The advantages

of dataflow programs are many: inherent concurrency and

parallelism, easy to reason about their correctness, natural

composability of functions and programs, etc.

X. FUTURE RESEARCH DIRECTIONS

Below, we discuss some ongoing and future directions of

research to improve ZILLIQA.

State sharding. With increase in ZILLIQA’s user base and

its high transaction throughput would come the following

challenge: How to efficiently handle the continuous influx of

blocks that modify the global state. This is also referred to

as state sharding in the literature. In essence, state sharding

will alleviate full nodes from storing and receiving all blocks

and transactions. This way it can further reduce the storage

and communication load for nodes, and thus constitute another

scaling-up factor to the throughput. However, it is non-trivial

to design a secure and efficient state sharding scheme, as

cross-shard communications arising from state sharding may

outweigh the performance gains. More research needs to be

done to address such additional complexities.

Secure Proof-of-Stake (SPoS). To the best of our knowl-

edge, there has been no literature that proposes a secure

PoS scheme, and thus we base ZILLIQA’s building blocks on

a PoW scheme. However, given the significant performance

gain from PoS for consensus algorithms, it is worthwhile

investigating further into the PoS paradigm, in search for a

secure and efficient PoS scheme for ZILLIQA.

Storage pruning. We are currently exploring ways to

securely prune the dated blocks stored on the blockchain to

reduce the storage requirements and ease the joining process

for new nodes. We may consider multi-grade storage, com-

pression of blocks and transactions as possible solutions.

Cross-Chain support. ZILLIQA has every intention to

complement other public blockchains and build a healthy

ecosystem to provide end users a broad spectrum of platforms

of choice for their applications. To this end, ZILLIQA will seek

technical solutions to support gradual cross-chain communi-

cation and potentially enable cross-chain applications.

Privacy-preserving computation. It is desirable for several

applications in particular (financial modeling applications)

to have strong privacy and intellectual property protection

when running on ZILLIQA. Solutions based on Oblivious

RAM to hide access pattern on an encrypted data [21], ZK-

SNARK [22] to hide the input to a program, and private

function evaluation [23] to hide the contract’s business logic

are also being investigated.

XI. CONCLUSION

In this whitepaper, we have presented ZILLIQA’s sharding

architecture that allows the mining network to process trans-

actions in parallel and reach high throughput. ZILLIQA also
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comes with a unique smart contract platform that leverages

the underlying sharing architecture and follows a dataflow

programming paradigm. The new smart contract language is

ideal for running computation-intensive task in an efficient

manner.
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APPENDIX A

SCHNORR DIGITAL SIGNATURE ALGORITHM

A. EC-Schnorr (Single Signer) Scheme

EC-Schnorr works on a group where the discrete logarithm

is hard [8], [24], [25]. ZILLIQA uses the elliptic curve group

defined over the popular secp256k1 curve. We denote by

C := (p,G, n) the set of parameters that define the group,

where p is a prime number that specifies the underlying field

Fp, G is the base point on the curve and n (a prime) is the

order of G. EC-Schnorr also requires a cryptographic hash

function H that we instantiate with SHA3-256 [6].

EC-Schnorr is a set of three algorithms KeyGen, Sign

and Verify that we present in this section. In the algorithms

below, for any scalar x and a point Q, we denote the scalar

multiplication by [x]Q.

1) KeyGen(C): The algorithm takes the curve parameters

C and returns a pair of public (pk) and private (sk) keys.

1. Choose sk
$
← [1, n− 1],

2. Set pk ← [sk]G,
3. return (pk, sk).

KeyGen(C = (p,G, n))

2) Sign(C, pk, sk,m): This algorithm is run by the signer. It

takes the curve parameters C, a public key and a private

key pair (pk, sk) and a message to sign m ∈ {0, 1}∗. It

returns a signature σ.

1. Choose k
$
← [1, n− 1],

2. Set Q← [k]G,
3. Set r ← H(Q||pk||m) mod n,
4. If r = 0 Goto 1.

5. Set s← k − r · sk mod n,
6. If s = 0 Goto 1.

7. Set σ ← (r, s),
8. return σ.

Sign(C, pk, sk,m)

11

https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
http://www.secg.org/download/aid-386/sec2-final.pdf
http://www.secg.org/download/aid-386/sec2-final.pdf
http://gavwood.com/paper.pdf
https://github.com/ethereum/wiki/wiki/Ethash
http://eprint.iacr.org/2015/996


3) Verify(C, σ, pk,m): This algorithm is run by a verifier

who wishes to check the validity of a signature. It takes

the curve parameters C, a signature σ, a public key pk
and a message m. It returns 1 if the signature is valid for

m under pk, or else returns 0.

1. Parse (r, s)← σ,
2. If r, s /∈ [1, n− 1] return 0.
3. Set Q← [s]G+ [r]pk,
4. If Q = O(neutral point) return 0.
5. Set v ← H(Q||pk||m) mod n,
6. If v = r return 1, else return 0.

Verify(C, σ, pk,m)

B. EC-Schnorr Multisignature Scheme

1) Setting & Assumptions: EC-Schnorr can also be used

as a multisignature scheme [11]. In a multisignature scheme,

we have T signers: P1, . . . , PT , an aggregator and a verifier.

The signers wish to jointly sign a message m. The aggregator

plays the role of a facilitator and aggregates the signatures sent

by each individual signer. The verifier verifies the aggregated

signature. The role of aggregator and the verifier can be played

by the same entity.

Each signer Pi has her own public private key pair (pki, ski)
for EC-Schnorr single signer scheme. We denote by P =
{pk1, . . . , pkT } the set of all public keys. We also assume

a public message mp known to every entity. The message mp

may be specific to the application scenario and make take

the following form: I know the private key for

my public key for the session id: XXXX. The

purpose of this message is to defeat certain known attacks

on the scheme [26].

2) Multisignature Protocol: Multisignature is an interactive

protocol between signers, the aggregator and the verifier

(see Figure 2 for a schematic representation). The protocol

has six steps as described below.

1) (One-Time) Identity Setup: This step is run between

each participant and the verifier. At the start of the pro-

tocol, each signer Pi if not currently involved in another

signing protocol generates an EC-Schnorr signature σi on

the message mp. Pi then sends (σi, pki) to the verifier.

The verifier then performs the following checks:

a) Check if pki ∈ P . If the check fails, the verifier aborts.

b) Check if each σi is a valid EC-Schnorr signature on

mp for pki, by invoking Verify(C, σi, pki,mp). Verifier

aborts if any of these signature verifications returns

0. If all the signatures are valid, then the protocol

proceeds to the next step.

If the verifier does not receive σi for every pki in P ,

she also aborts. To record whether/or not she received

a signature from Pi, she uses a bitmap Z[1, . . . , |P |].
Identity Setup is a one-time process followed by any

number of the next steps. Only if the set up successfully

terminates, the next steps of the protocol can start.

2) Commitment Generation: Each signer Pi then choses a

random ki
$
← [1, n−1] and computes Qi = [ki]G. Recall

that G is the base point on the elliptic curve and n is the

order of G. Pi then sends Qi to the aggregator.

3) Challenge Generation: The aggregator first computes the

aggregated keys: pk =
∑

pki∈P pki for keys in P . She

also computes Q =
∑

i Qi for Qi’s received in the pre-

vious step. She then computes r ← H(Q||pk||m) mod n
and sends (r,Q, pk) to each Pi.

4) Response Generation: Each signer Pi first checks the

integrity of r received previously. This is done by re-

computing H(Q||pk||m) and checking if it is equal to the

received r. If the check fails then Pi aborts the protocol

or else generates si ← (ki− r · ski) mod n and sends si
to the aggregator.

5) Response Aggregation: Aggregator computes the ag-

gregated response s =
∑

i si mod n and builds an

aggregated signature σ = (r, s). She then sends (m,σ)
to the verifier.

6) Signature Verification: Verifier now checks whether the

signature is valid. She performs the following steps:

a) Aggregate the public keys in P as pk′.
b) Check if σ is a valid EC-Schnorr signature on m for

the public key pk′ by invoking Verify(C, σ, pk′,m).

Returns the output of Verify.

APPENDIX B

MULTISIGNATURE FOR PBFT

Classical EC-Schnorr multisignature protocol as described

in Appendix A requires the participation of all the participants.

Hence, we cannot directly use it in the PBFT setting, where,

we only require that the message be signed by at least 2
3n+1

nodes in the committee. In this section, we present a tweak

to this protocol inspired from [14]. The tweak consists in

maintaining two bitmaps that record the participation in the

protocol. The modified protocol is given in Figure 3. Below,

we briefly present the protocol.

1) (One-Time) Identity Setup: This step is exactly the same

as in the classical EC-Schnorr multisignature protocol as

presented in Appendix A. Only if the set up successfully

terminates, the next steps of the protocol can start.

2) Commitment Generation: This step is similar to the

classical EC-Schnorr multisignature protocol. The only

difference being that each participant Pi also sends its

public key pki along with a Qi to the aggregator.

3) Challenge Generation: At this step the aggregator main-

tains a bitmap BQ[1, . . . , |P |] initialized to 0. For every

(Qi, pki) received in the previous step, the aggregator sets

BQ[i] to 1. The aggregator waits for a stipulated time to

handle network propagation delay and then computes the

following:

a) The aggregated keys: pk ←
∑

pki∈P pki ·BQ[i], i.e.,

she adds the public keys for which she received a Qi.

b) She also computes Q ←
∑

i:BQ[i]=1 Qi for Qi’s

received in the previous step.
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Pi(C,mp,m, pki, ski) Aggregator (C,m,P ) Verifier (C,mp, P, Z)

σi ← Sign(C, pki, ski,mp)
(σi, pki)

if pki /∈ P abort

if ¬Verify(C, σi, pki,mp) abort

Z[i] = 1
At the end of the setup phase:

if ¬Z[i] abort

ki
$
← [1, n− 1]

Qi ← [ki]G
Qi

pk ←
∑

pki∈P pki
Q←

∑
i Qi

r ← H(Q||pk||m)
(r,Q, pk)

r′ ← H(Q||pk||m)
if r′ 6= r abort

si ← (ki − r · ski) mod n
si

s←
∑

i si mod n
σ ← (r, s)

(m,σ)

pk′ ←
∑

pki∈P pki
return Verify(C, σ, pk′,m)

Fig. 2: Multisignature using EC-Schnorr. Verifier stores a bit map Z[1, . . . , |P |], where each entry is initialized to 0.

c) She then computes r ← H(Q||pk||m) mod n and

sends (r,Q, pk) to each Pi.

4) Response Generation: This step is similar to the classical

EC-Schnorr multisignature protocol. The only difference

being that each participant Pi also sends its public key

pki along with a si to the aggregator.

5) Response Aggregation: At this step the aggregator main-

tains a bitmap Bs[1, . . . , |P |] initialized to 0. For every

(si, pki) received in the previous step, the aggregator

checks if the received si is valid by computing Q′
i ←

[si]G + [r]pki and then verifying if Q′
i is equal to the

received Qi. If the two values are equal then she sets

Bs[i] to 1. This step allows to detect participants who

send an arbitrary value of si and attempt to mount a DoS

attack. The aggregator then waits for a stipulated time to

handle network propagation delay and then computes the

following:

a) If the two bitmaps BQ and Bs are equal, which

means the same set of participants sent messages to the

aggregator in the commitment generation and response

generation steps, then the aggregator computes the

aggregated response s =
∑

i si mod n and builds

an aggregated signature σ = (r, s). She then sends

(σ,m,BQ) to the verifier.

b) If the two bitmaps are not equal, which means a

participant sent a Qi but not the corresponding si, then

the aggregator computes the set-theoretic difference

of BQ and Bs, i.e., the set of public keys pki ∈ P
for which the aggregator received a Qi but not the

corresponding si. The corresponding set of public keys

can then be blacklisted. The aggregator re-initializes

Bs to 0 and computes the intersection between BQ and

Bs and stores it in BQ. Finally, it repeats the protocol

starting from the challenge generation step.

6) Signature Verification: The verifier first checks if the

signature was generated by at least 2
3 |P |+1 participants

and then checks whether the multisignature is valid. The

rest of the steps are same as in the classical EC-Schnorr

multisignature protocol.
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Pi(C,mp, pki, ski) Aggregator (C,m,BQ, Bs, P ) Verifier (C,mp, P, Z)

σi ← Sign(C, pki, ski,mp) (σi, pki)

if pki /∈ P abort

if ¬Verify(C, σi, pki,mp) abort

Z[i] = 1
At the end of the setup phase:

if ¬Z[i] abort

ki
$
← [1, n− 1]

Qi ← [ki]G
(Qi, pki)

if pki ∈ P then BQ[i]← 1

1© After a certain stipulated time:

pk ←
∑

pki∈P pki ·BQ[i]

Q ←
∑

i:BQ[i]=1 Qi

r ← H(Q||pk||m) mod n

(r,Q, pk)

r′ ← H(Q||pk||m)
if r′ 6= r abort

si ← (ki − r · ski) mod n

(si, pki)

Q′
i ← [si]G+ [r]pki

if Q′
i = Qi then:

Bs[i]← 1

After a certain stipulated time:

if Bs = BQ then:

s ← (
∑

i:Bs[i]=1 si) mod n

σ ← (r, s)
else:

May blacklist BQ ⊖Bs

BQ ← BQ ∧Bs

Bs ← 0|P |

goto 1©

(σ,m,BQ)

if
∑

i BQ[i] < 2|P |/3 + 1 then:

return 0
pk′ ←

∑
pki∈P pki ·BQ[i]

return Verify(C, σ, pk′,m)

Fig. 3: EC-Schnorr multisignature variant used in PBFT. The leader of each committee plays the role of the aggregator. The

aggregator maintains two bitmaps BQ[1, . . . , |P |] and Bs[1, . . . , |P |], while the verifier stores a bit map Z[1, . . . , |P |]. The

entries of the bitmaps are initialized to 0. BQ⊖Bs returns a bitmap that represents the set-theoretic difference of BQ and Bs,

i.e., it represents the set of public keys pki ∈ P for which the aggregator received a Qi but not the corresponding si.

14


	Introduction
	System Setting and Assumptions
	Cryptographic Layer
	Schnorr Signature
	Non-malleability
	Multisignature
	Speed

	Proof of Work

	Data Layer
	Accounts, Addresses and State
	Transactions
	Blocks
	DS Blocks
	Transaction Blocks


	Network Layer
	Network Sharding
	Directory Service Committee
	Resolving Conflicts
	Generating Shards

	Public Channel
	New Nodes Joining Zilliqa
	Transaction Sharding and Processing
	Transaction Assignment
	Transaction Processing


	Consensus Layer
	Practical Byzantine Fault Tolerance
	Improving Efficiency
	Zilliqa Consensus
	Leader Change

	Smart Contract Layer
	Computational Sharding using Dataflow Paradigm
	Smart Security Budgeting
	Scalable Applications: Examples

	Incentive Layer
	Token Supply
	Incentivizing Miners

	Related Work
	Future Research Directions
	conclusion
	References
	Appendix A: Schnorr Digital Signature Algorithm
	EC-Schnorr (Single Signer) Scheme
	EC-Schnorr Multisignature Scheme
	Setting & Assumptions
	Multisignature Protocol


	Appendix B: Multisignature for PBFT

