
Vite: A High Performance Asynchronous Decentralized
Application Platform

Chunming Liu
charles@vite.org

Daniel Wang
daniel@loopring.org

Ming Wu
woo@vite.org

Abstract

Vite is a generalised decentralized application platform that meets the requirements of industrial applications for
high throughput, low latency and scalability while taking into account security. Vite uses DAG ledger structure, and
transactions in ledgers are grouped by accounts. The Snapshot Chain structure in Vite can make up for the lack of
security of the DAG ledger. The HDPoS consensus algorithm, through which writing and confirming of transactions
are asynchronous, provides high performance and scalability. The Vite VM is compatible with EVM, and the smart
contract language extended from Solidity, providing more powerful ability of description. In addition, an important
improvement in Vite design is the adoption of a asynchronous Event Driven Architecture, which transmits information
through messages between smart contracts, which greatly improves system throughput and scalability. In addition to
built-in native tokens, Vite also supports users to issue their own digital assets, and also provides cross chain value
transfer and exchange based on Loopring Protocol [1]. Vite realizes resource allocation by quotas, and light users do
not have to pay transaction fees. Vite also supports contract scheduling, name service, contract update, block pruning
and other features.

1 Introduction
1.1 Definition
Vite is a universal dApp platform that can support a set
of smart contracts, each of which is a state machine with
independent state and different operational logic, which can
communicate by message delivery.

In general, the system is a transactional state machine.
The state of the system s ∈ S, also known as the world
state, is composed of the state of each independent account.
An event that causes changes in account status is called
transactions. The more formalized definition is as follows:

Definition 1.1 (Transactional State Machine) a
transactional state machine is a 4-tuple: (T ,S, g, δ),where
T is a set of transactions,S is a set of states,g ∈ S is the
initial state, also known as genesis block, δ : S × T → S
is a state transition function.

The semantics of this transactional state machine is a
discrete transition system, which is defined as follows:

Definition 1.2 (Semantics of Transactional State Machine)
The semantics of a transactional state machine (T ,S, s0, δ)
is a discrete transition system: (S, s0,→).→∈ S × S is a
transition relationship.

At the same time, the decentralized application platform
is a distributed system with final consistency. Through some
consensus algorithm, the final state can be reached between
nodes. In realistic scenarios, what is stored in the state of
smart contracts is a set of completed data in a decentralized

application, with large volume and can not be transmitted
between nodes. Therefore, nodes need to transfer a set of
transactions to achieve the consistency of the final state. We
organize such a group of transactions into a specific data
structure, usually referred to as ledgers.

Definition 1.3 (Ledger) Ledger is composed of a set of
transactions, with an abstract data type recursively con-
structed. It is defined as follows:{

l = Γ(Tt)
l = l1 + l2

Among them,Tt ∈ 2T ,representing a set of transactions,
Γ ∈ 2T → L,represents a function of constructing a book
through a set of transactions,L is a set of ledgers,+ : L×L →
L,representing the operation of merging two sub ledgers into
one.

It should be noted that in such systems, ledgers are
usually used to represent a group of transactions, rather
than a state. In Bitcoin [2]and Ethereum [3],the ledger
is a block chain structure, where transactions are globally
ordered. To modify a transaction in the ledger, we need
to reconstruct a sub ledger in the account book, thereby
increasing the cost of tampering with the transaction.

According to the same group of transactions, different
valid books can be constructed, but they represent a differ-
ent order of transactions and may cause the system to enter
a different state. When this happens, it is usually called
”fork”.

1

Definition 1.4 (Fork) Assume Tt, Tt
′ ∈ 2T ,Tt ⊆ Tt

′. if
l = Γ1(Tt),l′ = Γ2(Tt

′),and don’t meet l ⪯ l′,we can name l
and l′ are fork legers. ⪯ represents prefix relitionship.

According to the semantics of the transactional state
machine, we can easily prove that from an initial state, if
the ledger is not forked, each node will eventually enter
the same state. So, if a forked ledger is received, will
it certainly enter a different state? It depends on the
inherent logic of the transaction in the ledger, and how
the ledgers organize partial orders between transactions. In
reality, there are often some transactions that satisfy the
commutative laws, but because of the problem of account
design, they frequently cause forks. When the system starts
from an initial state, receives two forked ledgers and ends
up in the same state, we call these two ledgers a false forked
ledger.

Definition 1.5 (False Fork) Initial state s0 ∈ S,ledger
l1, l2 ∈ L,s0

l1→ s1, s0
l2→ s2. if l1 ̸= l2,and s1 = s2,we

call these two ledgers l1, l2 as false fork ledgers.

A well designed ledger should minimize the probability
of false fork

When the fork occurs, each node needs to choose one
from multiple forked ledgers. In order to ensure the consis-
tency of the state, the nodes need to use the same algorithm
to complete the selection. This algorithm is called the
consensus algorithm.

Definition 1.6 (Consensus Algorithm) Consensus al-
gorithm is a function that receives a set of ledgers and returns
the only ledger:

Φ : 2L → L

Consensus algorithm is an important part of system
design. A good consensus algorithm should possess high
convergence speed to reduce the sway of consensus in
different forks, and have a high ability to guard against
malicious attacks.

1.2 Current Progress
The Ethereum [4]took the lead in realizing such a system.
In the design of the Ethereum, the definition of the world
state is S = ΣA, a mapping from the account a ∈ A and
the state of this account σa ∈ Σ.Therefore, any state in the
state machine of the Ethereum is global, which means that
a node can achieve the status of any account at any time.

The state transition function δ of Ethereum is defined
by a set of program codes. Each group of code is called a
smart contract. The Ethereum defines a Turing complete
virtual machine, called EVM, whose instruction set is called
EVM code. Users can develop smart contracts through a
programming language Solidity similar to JavaScript, and
compile them into EVM code, and deploy them on Ethereum
[5]. Once the smart contract is successfully deployed, it

is equivalent to defining contract account a receives the
state transition function δa. EVM is widely used in such
platforms, but there are also some problems. For example,
there is a lack of library function support and security
problems.

The ledger structure of the Ethereum is a block chain
[2]the block chain is made up of blocks, each block contains
a list of transactions, and the latter block refers to the hash
of the previous block to form a chain structure.

Γ({t1, t2, ...|t1, t2, ... ∈ T}) = (..., (t1, t2, ...)) (1)

The greatest advantage of this structure is to effectively
prevent transactions from being tampered with, but because
it maintains the full order of all transactions, the exchange of
two transaction orders will generate a new ledger, which has
a higher probability of fork. In fact, under this definition,
the state space of a transactional state machine is regarded
as a tree: the initial state is the root node, the different
transaction order represents different paths, and the leaf
node is the final state. In reality, the state of a large number
of leaf nodes is the same, which leads to a large number of
false forks.

The consensus algorithm Φ is called PoW, which first
proposed in Bitcoin protocol [2].The PoW algorithm relies
on a mathematical problem that is easily verifiable but
difficult to solve. For example, based on a hash function
h : N → N ,finding the result of x,to meet the requirement
h(T + x) ≥ d,dis a given number, called the difficulty, T
is a binary representation of the trade list contained in the
block. Each block in the block chain contains a solution to
such problems. Add up the difficulty of all blocks, which is
the total difficulty of a block chain ledger:

D(l) = D(
∑
i

li) =
∑
i

D(li) (2)

Therefore, when choosing the correct account from the
fork, choose the fork with the highest difficulty:

Φ(l1, l2, ..., ln) = lm where m = arg max
i∈1..n

(D(li)) (3)

The PoW consensus algorithm has better security and
has been running well in Bitcoin and Ethereum. However,
there are two main problems in this algorithm. The first is to
solve a mathematical problem that requires a large amount
of computing resources, resulting in a waste of energy. The
second is the slow convergence speed of the algorithm, thus
affecting the system’s overall throughput. At present, the
TPS of the Ethereum is only about 15, which is totally
unable to meet the needs of decentralized applications.

1.3 Direction of Improvement
After the birth of the Ethereum, the Ethereum community
and other similar projects began to improve the system from
different directions. From the abstract model of the system,
the following directions can be improved:

2

• Improving the system state S

• Improving the state transition function δ

• Improving the structure of the ledger Γ

• Improving the consensus algorithm Φ

1.3.1 Improve the state of the system

The main idea of improving the state of the system is to
localize the global state of the world, each node is no longer
concerned with all transactions and state transfers, and only
maintains a subset of the whole state machine. In this way,
the potentials of the set S and the set T are greatly reduced,
thus improving the scalability of the system. Such systems
include: Cosmos [6],Aelf[7],PChain and so on.

In essence, this side chain based scheme sacrifices the
wholeness of the system state in exchange for the scalability.
This makes the decentralization of each dApp running on it
is weakened - the transaction history of a smart contract is
no longer saved by every node in the whole network, but only
by a part of the node. In addition, cross contract interaction
will become the bottleneck of such a system. For example,
in Cosmos, interactions in different Zone require a common
chain Hub to complete [6].

1.3.2 Improve state transition function

Based on improving EVM, some projects provide more
abundant smart contract programming languages. For
example, a smart contract language Rholang is defined
in RChain based on π calculus ; the smart contract in
NEO is called NeoContract, which can be developed in the
popular programming languages such as Java,C# etc; EOS
is programmed with C/C++.

1.3.3 Improve the ledger structure

The improvement direction of the ledger structure is the
construction of the equivalent class. The linear ledger with
the global order of multiple transactions is improved to a
nonlinear ledger that only records partial order relations.
This nonlinear ledger structure is a DAG (Directed Acyclic
Graph). At present, Byteball [8],IOTA[9],Nano[10]and other
projects have realized the function of encrypting money
based on DAG’s account structure. Some projects are trying
to use DAG to implement smart contracts, but so far,
improvements in this direction are still being explored.

1.3.4 Improve consensus algorithm

The improvement of consensus algorithm is mostly to im-
prove the throughput of the system, and the main direction
is to suppress the generation of false fork. Next we will
discuss what factors are involved in false fork.

Figure 1: False Fork
As shown,L is a collection of all possible forked accounts

for a set of transactions, and S is a collection of states that
can be reached in different orders. According to definition
,1.4, mapping f : L → S is a surjective;And according to
definition 1.5, this mapping is not a injective. Here we
calculate the probability of the false fork:

Suppose that C users have the right to produce ledgers,
M = |L|,N = |S|,Mi = |Li|, where Li = {l|f(l) = si, si ∈
S}. The probability of false fork is as follows:

Pff =

N∑
i=1

(
Mi

M

)C

− 1

MC−1
(4)

From this formula, we can see that in order to reduce
the probability of false fork, there are two ways:

• � Establish equivalence relations on the L of the
ledger set, divide equivalence classes into them, and
construct fewer forked ledgers.

• � Restrict users who have the right to produce ledgers,
thereby reducing C

The first way is the important direction in Vite design.
It will be discussed in detail later. The second ways have
been adopted by many algorithms. In the PoW algorithm,
any user has the right to produce a block; and the PoS
algorithm limits the power of the production block to those
with system rights; the DPoS algorithm [11] limits the user
with the right to produce the block to be further restricted
within a group of agent nodes.

At present, through improved consensus algorithm, some
influential projects appeared. For example, Cardano uses a
PoS algorithm called Ouroboros, and literature [12] gives
a strict proof of the related characters of the algorithm;
BFT-DPOS algorithm used by EOS[13], is a variant of the
DPoS algorithm and improves system throughput by fast
producing blocks; Qtum [14]’s consensus algorithm is also a
PoS algorithm; The Casper algorithm adopted by RChain
[15] is one of the PoS algorithms as well.

There are also other projects that put forward their own
proposals for improving the consensus algorithm. NEO[16]
uses a BFT algorithm, called dBFT, and Cosmos[6] uses an
algorithm called Tendermint [17].

3

2 Ledgers
2.1 Overview
The role of ledgers is to determine the order of transactions,
and the order of transactions will affect the following two
aspects:

• Consistency of status: Since the state of the system
is not a CRDT (Conflict-free replicated data types)
[18], not all transaction is exchangeable, and the
sequence of different transaction execution may lead
to the system entering a different state.

• Effectiveness of Hash: In the ledger, the trans-
action will be packaged into blocks, which contain
hash that is referenced each other. The order of
transactions affects the connectivity of hash quoted
in the ledgers. The greater the scope of this impact,
the greater the cost of tampering with transactions.
This is because any change to a transaction must be
rebuilt by hash, which directly or indirectly refers to
the block of the transaction..

The design of the ledger also has two main objectives:

Figure 2: Ledger merge

• Reducing the false fork rate: as discussed in
the previous section, the reduction of the false fork
rate can be achieved by establishing an equivalent
class and combining a group of accounts that lead
the system into the same state into a single account.
As shown above, according to the formula of false
fork rate, the false fork rate of the ledger on the
left is Pff =

(
3
5

)C
+

(
2
5

)C − 1
5C−1 ;after the merge of

ledger space, the false fork rate of the right graph is
Pff

′ =
(
2
3

)C
+
(
1
3

)C− 1
3C−1 .It is known that when C >

1,Pff
′ < Pff . That is to say, we should minimize the

partial ordering relationship between transactions and
allow more transactions to be exchanged sequentially.

• Tamper proof: when a transaction t is modified
in the ledger l,in the two sub ledgers of the book
l = l1 + l2, the sub ledger l1 is not affected, and the
hash references in the sub ledger l2 need to be rebuilt
to form a new valid ledger l′ = l1 + l2

′. Affected sub
ledger l2 = Γ(T2), T2 = {x|x ∈ T, x > t}.Thus, to
increase the cost of tampering with transactions, it is
necessary to maintain the partial order relationship

between transactions as much as possible in order to
expand the scope of tampering |T2|.

Figure 3: Ledger structure comparison

Obviously, the above two objectives are contradictory,
and the necessary trade-offs must be made when designing
the account structure. Since the account maintenance is a
partial order between transactions, it is essentially a partial
ordered set (poset) [19], if represented by Hasse diagram
(Hasse diagram)[20], it is a DAG on the topology.

The above picture compares several common ledger
structures, and the ledgers near the left are maintained with
less partial order. Hasse diagram appears flat and has a
lower false fork rate; the ledgers near the right side maintain
more partial order relationships, and Hasse diagram is more
slender and more tamper resistant.

In the picture, the most-left side is a common set based
structure in a centralization system without any tamper
proofing features; the most right side is a typical blockchain
Ledger with the best tamper proof features; between the
two, there are two DAG ledgers, the block-lattice account
[10] used by Nano on the left; and the right side, the tangle
book [9] is used by IOTA . In terms of characteristics,
blocklattice maintains less partial order relations and is more
suitable for the accounting structure of high performance
decentralized application platforms. Because of its poor
tampering characteristics, it can expose security risks, so far,
no other projects adopt this ledger structure except Nano.

In order to pursue high performance, Vite adopts the
DAG ledger structure. At the same time, by introducing an
additional chain structure Snapshot Chain and improving
the consensus algorithm, the shortcomings of block-lattice
security are successfully made up, and the two improvements
will be discussed in detail later.

2.2 Pre Constraint
First, let’s take a look at the precondition of using this ledger
structure for the state machine model. This structure is
essentially a combination of the entire state machine as a set
of independent state machines, each account corresponding
to an independent state machine, and each transaction only
affects the state of an account. In the ledger, all transactions
are grouped into accounts and organized into a chain of
transactions in the same account. Therefore, we have the

4

following restrictions on the state S and transaction T in
Vite:

Definition 2.1 (Single degree of freedom constraint)
system state s ∈ S,is the vector s = (s1, s2, ..., sn) formed
by the state si of each account. For ∀ti ∈ T ,after
performing the transaction ti, the system state transfers
as follows: (s1

′, ..., si
′, ..., sn

′) = σ(ti, (s1, ..., si, ..., sn)),need
to meet:sj ′ = sj , j ̸= i.This constraint is called a single
degree of freedom constraint for a transaction.

Intuitively, a single degree of freedom transaction will
only change the state of an account without affecting the sta-
tus of other accounts in the system. In the multidimensional
space where the state space vector is located, a transaction
is executed, and the state of the system moves only along the
direction parallel to a coordinate axis. Please note that this
definition is more stringent than the transaction definition
in Bitcoin, Ethereum and other models. A transaction in
Bitcoin will change the state of the two accounts of the
sender and the recipient; the Ethereum may change the state
of more than two accounts through a message call.

Under this constraint, the relationship between trans-
actions can be simplified. Any two transaction is either
orthogonal or parallel. This provides conditions for grouping
transactions according to accounts. Here is an example to
illustrate:

Figure 4: Single degree of freedom trading and intermediate
state

As shown in the figure above, suppose Alice and Bob
have 10 USD respectively. The initial state of the system is
s0 = (10, 10). When Alice wants to transfer 2 USD to Bob,
in the model of Bitcoin and Ethereum, a transactiont′,can
make the system go directly into the final state:s0

t′→ s′.
In the definition of Vite, transaction t′ changed the

status of two accounts of Alice and Bob as well, which did
not conform to the principle of single degree of freedom.
Therefore, the transaction must be split into two transac-
tions:

1) A transaction t1 that represents transferring of 2 USD
by Alice

2) A transaction t2 that represents receiving of 2 USD
by Bob

In this way, from the initial state to the final state
s′ there could be two different paths s0

t1→ s1
t2→ s′ and

s0
t2→ s2

t1→ s′. These two paths are respectively passed
through the intermediate state s1 and s2, and these two
intermediate states are the mapping of the final state s′ in
the two account dimensions.In other words, if you only care
about the state of one of the accounts, you only need to
execute all the transactions that correspond to the account,
and do not need to carry out the transactions of other
accounts.

Next, we will define how to split transactions in
Ethereum into the single degree of freedom transactions
required by Vite:

Definition 2.2 (Transaction Decomposition) Dividing
a transaction with a degree of freedom greater than 1
into a set of single degree of freedom transactions, named
Transaction Decomposition. A transfer transaction can be
split into a sending transaction and a receiving transaction;
a contract call transaction can be split into a contract request
transaction and a contract response transaction; a message
call within each contract can be split into a contract request
transaction and a contractual response transaction.

Thus, there would be two different types of transactions
in the ledgers. They are called ”trading pairs”:

Definition 2.3 (Trading Pair) a sending transaction or
contract request transaction, collectively referred to as a
”request transaction”; a receiving transaction or a contract
response transaction, collectively referred to as ”response
transaction”. A request transaction and a corresponding
response transaction are called transaction pairs. The
account for initiating the request for transaction t is recorded
as A(t); the corresponding response transaction is recorded
as: t̃, the account corresponding to the transaction is
recorded as A(t̃).

Based on the above definition, we can conclude the
possible relationship between any two transactions in Vite:

Definition 2.4 (Transaction Relationship) There may
exist for the following relations for two transactions t1 and
t2:

Orthogonality:If A(t1) ̸= A(t2),the two transactions
are orthogonal , recorded ast1 ⊥ t2;

Parallel:If A(t1) = A(t2),the two transactions are
parallel, recorded as t1 ∥ t2;

Causality:If t2 = t̃1,then the two transactions are
causal,recorded as t1 ▷ t2, or t2 ◁ t1.

2.3 Definition of Ledger
To define a ledger is to define a poset. First, let’s define the
partial ordering relationship between transactions in Vite:

Definition 2.5 (Partial order of transactions) we use
dualistic relationship < to represent the partial order relation
of two transactions:

5

A response transaction must follow a corresponding
request transaction :t1 < t2 ⇔ t1 ▷ t2;

All transactions in an account must be strictly and
globally ordered:∀t1 ∥ t2, there must be :t1 < t2,or t2 < t1.

Due to the partial ordering relationship established on
the transaction set T meet the characteristics:

• Irreflexive: ∀t ∈ T ,there is no t < t;

• Transitive:∀t1, t2, t3 ∈ T , if t1 < t2, t2 < t3, then
t1 < t3;

• Asymmetric:∀t1, t2 ∈ T , if t1 < t2, then it doesn’t exist
t2 < t1

In this way, we can define the Vite account in strict
partial order set:

Definition 2.6 (Vite Ledger) Vite Ledger is thestrict
poset composed by set of T of the given transaction, and
the partial poset <

Figure 5: The relationship between the ledger and the
transaction in Vite

A strict poset can correspond to a DAG structure. As
shown in the figure above, circles represent transactions, and
arrows denote dependencies between transactions. a → b
indicates that a depends on b.

The Vite ledger defined above is structurally similar
to block-lattice. Transactions are divided into request
and response transactions, each of which corresponds to a
separate block, each account Ai corresponds to a chain, a
transaction pair, and a response transaction referencing the
hash of its corresponding request transaction.

3 Snapshot chain
3.1 Transaction Confirmation
When the account is forked, the result of consensus may
swing between two forked ledgers. For example, based on

a blockchain structure, if a node receives a longer forked
chain, the new fork will be selected as the consensus result,
and the original fork will be abandoned and the transaction
on the original fork will be rolled back. In such a system,
transaction rollback is a very serious event, which will lead
to double spend. Just imagine that a business receives a
payment, provides goods or services, and after that payment
is withdrawn, the merchant may face losses. Therefore,
when a user receives a payment transaction, it needs to wait
for the system to ”confirm” the transaction to ensure that
the probability of rolling back is low enough.

Definition 3.1 (Transaction Confirmation) when the
probability of a transaction being rolled back is less than
a given threshold ϵ, the transaction is called confirmed.
Pr(t) < ϵ ⇔ t is confirmed.

Confirmation of transactions is a very confusing concept,
because whether a transaction is recognized depends in fact
on the implicit confidence level of 1− ϵ. A merchant selling
diamonds and a coffee seller suffered different losses when
they were attacked by double spend. As a result, the former
needs to set smaller ϵ on the transaction. This is also
the essence of the number of confirmations in Bitcoin. In
Bitcoin, the confirmation number indicates the depth of a
transaction in the block chain. The greater the number of
confirmations, the lower the probability of the transaction
being rolled back [2]. Therefore, merchants can indirectly
set the confidence level of the confirmation by setting the
waiting number of confirmation numbers.

The probability of transaction rollback decreases with
time due to the hash reference relationship in the account
structure. As mentioned above, when the design of the
ledger has better tampering characteristics, rolling back a
transaction needs to reconstruct all subsequent blocks of the
exchange in the block. As new transactions are constantly
being added to ledgers, there are more and more successive
nodes in a transaction, so the probability of being tampered
with will decrease.

In the block-lattice structure, as the transaction is
grouped by account, a transaction will only be attached
to the end of the account chain of its own account, and
the transaction generated by most other accounts will not
automatically become a successor node of the transaction.
Therefore, it is necessary to design a consensus algorithm
reasonably to avoid hidden dangers of double spend.

Nano adopts a voting based consensus algorithm, [10],
transaction is signed by a set of representative nodes selected
by a group of users. Each representative node has a weight.
When the signature of a transaction has enough weight, it
is believed that the transaction is confirmed. There are
following problems in this algorithm:

First, if a higher confidence degree of confirmation is
needed, the threshold of the voting weight needs to be raised.
If there are not enough representative nodes online, the
intersecting speed can not be guaranteed, and it is possible

6

that a user will never collect the number of tickets necessary
to confirm an exchange;

Second, the probability that transactions are rolled back
does not decrease with time. This is because at any time,
the cost of overthrowing a historical voting is the same.

Finally, the historical voting results are not persisted into
the ledger, and are stored only in the local storage of nodes.
When a node gets its account from other nodes, there is
no way to reliably quantify the probability of a historical
transaction being rolled back.

In essence, the voting mechanism is a partial centraliza-
tion solution. We can regard the voting results as a snapshot
of the status of the ledgers. This snapshot will be distributed
in the local storage of each node in the network. In order
to have the same tamper proof ability with the block chain,
we can also organize these snapshots into chain structures,
which is one of the kernel of the Vite design - the snapshot
chain [21].

3.2 Definition of snapshot chain
Snapshot chain is the most important storage structure in
Vite. Its main function is to maintain the consensus of Vite
ledgers. First, we give the definition of the snapshot chain:

Definition 3.2 (Snapshot block and snapshot chain)
a snapshot block that stores a state snapshot of a Vite ledger,
including the balance of the account, the Merkle root of the
contract state, and the hash of the last block in each account
chain. The snapshot chain is a chain structure composed of
snapshot blocks, and the next snapshot block refers to the
hash of the previous snapshot block.

The state of a user account contains the balance and the
hash of the last block of the account chain; in addition to
the above two fields, the state of a contract account contains
the Merkle root hash of it, The structure of the state of an
account is as follows:

struct AccountState {
// account balance
map<uint32, uint256> balances;
// Merkle root of the contract state
optional uint256 storageRoot;
// hash of the last transaction
// of the account chain
uint256 lastTransaction;

}

The structure of the snapshot block is defined as follows:

struct SnapshotBlock {
// hash of the previous block
uint256 prevHash;
// snapshot information
map<address, AccountState> snapshot;
// signature
uint256 signature;

}

In order to support multiple tokens at the same time,
the structure of recording the balance information in Vite’s
account state is not a uint256, but a mapping from the
token ID to the balance.

The first snapshot block in the snapshot chain is called
the ”genesis snapshot”, which saves snapshots of the genesis
block in the account.

Figure 6: snapshot chain

Since each snapshot block in the snapshot chain corre-
sponds to the only fork of the Vite ledger, it is possible
to determine the consensus result of the Vite ledger by the
snapshot block when the snapshot block does not fork in the
snapshot block.

3.3 Snapshot chain and transaction confir-
mation

After introducing the snapshot chain, the natural security
flaws of block-lattice structure have been remedied. If an
attacker wants to generate a double spend transaction, in
addition to rebuilding the hash reference in the Vite ledger,
it also needs to be rebuilt in the snapshot chain for all the
blocks after the first snapshot block of the transaction, and
need to produce a longer snapshot chain. In this way, the
cost of attack will be greatly increased.

In Vite, the confirmation mechanism of transactions is
similar to Bitcoin, which is defined as follows:

Definition 3.3 (Transaction Confirmation in Vite)
in Vite,if a transaction is snapshot by snapshot chain, the
transaction is confirmed., the depth of the snapshot block in
the first snapshot, is called the confirmation number of the
transaction.

Under this definition, the number of confirmed trans-
actions will increase by 1 when the snapshot chain grows,
and the probability of the double spend attack decreases
with the increase of the snapshot chain. In this way, users
can customize the required confirmation number by waiting
for different confirmation numbers according to the specific
scenario.

7

The snapshot chain itself relies on a consensus algorithm.
If the snapshot chain is forked, the longest fork is chosen
as a valid fork. When the snapshot chain is switched to a
new fork, the original snapshot information will be rolled
back, that means the original consensus on the ledger was
overthrown, and replaced by the new consensus. Therefore,
snapshot chain is the cornerstone of the whole system
security, and needs to be treated seriously.

3.4 Compressed storage
Because all account states need to be saved in every snapshot
block in snapshot chain, the storage space is to be very large,
the compression to the snapshot chains is necessary.

Figure 7: Snapshot before compression

The basic approach of compressing snapshot chain stor-
age space is to use incremental storage: a snapshot block
only stores data that is changed compared to the previous
snapshot block. If there is no transaction for one account
between the two snapshots, the latter snapshot block will
not save the data of the account.

To recover snapshot information, you can traverse the
snapshot block from the beginning to the end, and cover
the data of every snapshot block by the current data.

Snapshot#2
A1 : s1′

Snapshot#1
A1 : s1
A2 : s2
A3 : s3

Snapshot#3

A2 : s2′′

Figure 8: Snapshot after compression

Only the final status of each snapshot of an account is
saved when snapshotting, the intermediate state will not
be taken into account, so only one copy of the data in
the snapshot will be saved, no matter how many transac-
tions generated by an account between the two snapshots.
Therefore, a snapshot block takes up to S ∗ A bytes in
maximum. Among them, S = sizeof(si), is the number of
bytes occupied for each account state, and A is the total
number of system accounts. If the average ratio of active
accounts to total accounts is a, the compression rate is 1−a.

4 Consensus
4.1 Goal of Design
When designing a consensus protocol, we need to take full
account of the following factors:

• Performance.The primary goal of Vite is fast. To
ensure high throughput and low delay performance of
the system, we need to adopt a consensus algorithm
with higher convergence speed.

• Scalability.Vite is a public platform that is open to
all decentralized applications, so Scalability is also an
important consideration.

• Security.The design principle of Vite is not pursuing
the ultimate safety, however, it still needs to ensure
enough safety base line and effectively guard against
all kinds of attacks.

Compared with some existing consensus algorithms, the
security of PoW is better, and a consensus can be reached
if the computing power of malicious nodes are below 50%.
However, the intersecting speed of PoW is slow and can
not meet the performance requirements; PoS and its variant
algorithms remove the steps to solve mathematical prob-
lems, improve intersecting speed and single attack cost, and
reduce energy consumption. But the Scalability of PoS
is still poor, and the “Nothing at Stake” problem [22] is
difficult to solve; BFT algorithms has better performance in
security and performance, but its Scalability is a problem,
usually more suitable for private chain or consortium chain;
the DPoS [11] series algorithm effectively reduces the proba-
bility of false fork by limiting the permissions of generating
blocks. The performance and scalability are good. As a
consequence, DPoS has a slight sacrifice in security, and the
number of malicious nodes should not be more than 1/3 [23].

Generally, the DPoS algorithm has obvious advantages
in performance and scalability. Therefore, we choose DPoS
as the basis of the Vite consensus protocol and expand it
properly on the basis of it. Through Hierarchical Delegated
consensus protocol and asynchronous model, the overall
performance of the platform can be further improved.

4.2 Hierarchical Consensus
The consensus protocol of Vite is HDPoS (Hierarchical
Delegated Proof of Stake). The basic idea is to decompose
the consensus function Φ (functional decomposition):

Φ(l1, l2, . . . , ln) = Ψ(Λ1(l1, l2, . . . , ln),

Λ2(l1, l2, . . . , ln), . . .

Λm(l1, l2, . . . , ln))

(5)

Λi : 2L → L,is called as local consensus function,the
returned result is called the local consensus; Ψ : 2L → L,
known as the global consensus function, it selects a unique

8

result from a group of candidate in local consensus as the
final consensus result.

After this separation, the consensus of the whole system
has become two independent processes:

Local consensus generate the blocks corresponding to re-
quest transactions and response transaction in the
user account or contract account, and writes to the
ledgers.

Global consensus snapshots the data in the ledger and gener-
ates snapshot blocks. If the ledger is forked, choose
one of them.

4.3 Right of Block Generation and Consen-
sus Group

Then, who has the right to generate the transaction block
in the ledger and snapshot block in the snapshot chain?
What consensus algorithm is adopted to reach a consensus?
Since the ledger structure of Vite is organized into multiple
account chains according to different accounts, we can
conveniently define both the right of production of the blocks
in the ledger according to the dimension of the account, and
the production right of the snapshot block belong to to a
single group of users. In this way, we can put a number of
account chains or snapshot chains into a consensus group,
and in the consensus group, we can use a unified way to
produce the block and reach a consensus.

Definition 4.1 (Consensus Group) Consensus group is
a tuple (L,U,Φ, P), describing the consensus mechanism of
a portion of the account or snapshot chain.,L ∈ A|{As},
represents one or a number of account chains, or snapshot
chains of the consensus group in the ledger; U represents the
user with the block production right on the chain specified by
the L; Φ specifies the consensus algorithm of the consensus
group; and P specifies the parameters of the consensus
algorithm.

Under this definition, users can set up consensus groups
flexibly and select different consensus parameters on their
needs. Next, we will elaborate on different consensus groups.

4.3.1 Consensus Group of Snapshot

The consensus group of snapshot chains is called snapshot
consensus group, which is the most important consensus
group in Vite. The consensus algorithm Φ of snapshot con-
sensus group adopts the DPoS algorithm and corresponding
to Ψ in the hierarchical model. The number of agents and
the interval of the block generation are specified by the
parameter P .

For example, we can specify snapshot consensus groups
with 25 proxy nodes to produce snapshot blocks at intervals
of 1 second. This ensures that the transaction is confirmed
to be fast enough. Achieving 10 times transaction confirma-
tion need to wait 10 seconds in maximum.

4.3.2 Private Consensus Group

The private consensus group is only applicable to the pro-
duction of transaction blocks in ledgers, and belongs to the
account chain of private consensus group. The blocks can
only be produced by the owner of the private key of the
account. By default, all user accounts belong to the private
consensus group.

The greatest advantage of the private consensus group
is to reduce the probability of fork. Because only one user
has the right to produce blocks, the only possibility of fork
is that the user initiate a double spend attack personally or
a program error.

The disadvantage of the private consensus group is that
the user nodes must be online before they can pack the
transaction. This is not very suitable for the contract
account. Once the owner’s node fails, no other node can
replace the response transaction that it produces contracts,
which is equivalent to reducing the service availability of
dApp.

4.3.3 Delegate Consensus Group

In the delegate consensus group, instead of user account ,a
set of designated proxy nodes is used to package the trans-
action through the DPoS algorithm. Both user accounts
and contractual accounts can be added to the consensus
group. Users can set up a set of separate agent nodes and
establish a new consensus group. There is also a default
consensus group in Vite to help package transactions for all
the other accounts that haven’t established their delegate
consensus group individually, which is also known as the
public consensus group.

The delegate consensus group is suitable for most of
the contract accounts, because most of the transactions in
the contract account are contract response transactions, in
which higher availability and lower delays are needed than
the receivable transactions in the user account.

4.4 The Priority of the Consensus
In the Vite protocol, the priority of global consensus is
higher than that of local consensus. When the local con-
sensus is forked, the result of global consensus selection will
prevail. In other words, once the global consensus selected a
fork of the local consensus as the final result, even a longer
fork of a certain account chain in the future accounts occurs,
it will not cause the roll back of the global consensus results.

This problem needs more attention when implementing
cross chain protocol. Because a target chain may roll
back, the corresponding account chain of the relay contract
mapping the chain also needs to roll back accordingly. At
this moment, if the local consensus of the relay chain has
been adopted by the global consensus, it is impossible to
complete the rollback, which may cause the data between
the relay contract and the target chain to be inconsistent.

9

The way to avoid this problem is to set a parameter delay
in the consensus group parameter P , which specifies the
snapshot consensus group to take a snapshot only the local
consensus is completed after delay blocks. This will greatly
reduce the probability of inconsistency of relay contracts,
but it can’t be avoided completely. In the code logic of
relay contracts, it is also necessary to deal with the rollback
of the target chain separately.

4.5 Asynchronous Model
In order to improve system throughput further, we need
to support a more perfect asynchronous model on the
consensus mechanism.

The life cycle of a transaction includes transaction initi-
ation, transaction writing and transaction confirmation. In
order to improve the performance of the system, we need
to design these three steps into asynchronous mode. This
is because at different times, the quantity of transactions
initiated by users is different, the speed of transaction
writing and transaction confirmation processed by system
is fixed relatively. Asynchronous mode helps to flatten the
peaks and troughs thus improve the overall throughput of
the system.

The asynchronous model of the Bitcoin and the
Ethereum is simple: the transaction initiated by all users
is placed in an unconfirmed pool. When the miner packages
it into a block, the transaction is written and confirmed at
the same time. When the block chain continues to grow,
the transaction eventually reaches the preset confirmation
confidence level.

There are two problems in this asynchronous model:

• � Transactions are not persisted to ledgers in an uncon-
firmed state. Unrecognized transactions are unstable,
and there is no consensus involved, it can’t prevent
sending of transactions repeatedly.

• � There is no asynchronous mechanism for writing
and confirming of transactions. Transactions are only
written when confirmed, and the speed of writing is
restricted by the confirmation speed.

The Vite protocol establishes a more improved asyn-
chronous model: first, the transaction is split into a trans-
action pair based on a ”request - response” model, whether
it is a transfer or a contract call, and the transaction is
successfully launched when a request transaction is written
to the ledger. In addition, the written and confirming of
a transaction is asynchronous as well. Transactions can
be written into the DAG account of Vite firstly and will
not be blocked by the confirmation process. Transaction
confirmation is done through snapshot chain, and snapshot
action is asynchronous too.

This is a typical producer - consumer model. In the
life cycle of the transaction, no matter how production rate
changes in the upstream, the downstream can deal with the

transaction at a constant rate, so as to fully utilized the
platform resources and improve the system’s throughput.

5 Virtual Machine
5.1 EVM compatibility
At present, there are many developers in the Ethereum field,
and many smart contracts are applied based on Solidity and
EVM. Therefore, we decided to provide EVM compatibility
on the Vite virtual machine, and the original semantics in
most of the EVM instruction sets is kept in Vite. Because
Vite’s account structure and transaction definition is differ-
ent from Ethereum, the semantics of some EVM instructions
need to be redefined, for example, a set of instructions to get
block information. The detailed semantic differences can be
referred to appendix A..

Among them, the biggest difference is the semantics of
message calls. Next we will discuss in detail.

5.2 Event Driven
In the protocol of Ethereum, a transaction or message may
affect the status of multiple accounts. For example, a
contract invocation transaction may cause the status of mul-
tiple contract accounts to change at the same time through
message calls. These changes occur either at the same time,
or none at all. Therefore, the transaction in the Ethereum
is actually a kind of rigid transaction that satisfies the
characteristics of ACID (Atomicity, Consistency, Isolation,
Durability) [24], which is also an important reason for the
lack of expansibility in the Ethereum.

Based on considerations of scalability and performance,
Vite adopted a final consistency scheme satisfying BASE
(Basically Available, Soft state, Eventual consistency) [25]
semantics. Specifically, we design Vite as an Event-Driven
Architecture (EDA) [26]. Each smart contract is considered
to be an independent service, and messages can be commu-
nicated between contracts, but no state is shared.

Therefore, in the EVM of Vite, we need to cancel the
semantics of synchronous function calls across contracts,
and only allow message communication between contracts.
The EVM instructions affected are mainly CALL and
STATICCALL.In Vite EVM, these two instructions can’t
be executed immediately, nor can they return the result of
the call. They only generate a request transaction to write
to the ledger. Therefore in Vite, the semantics of function
calls will not be included in this instruction, but rather sends
messages to an account.

5.3 Smart Contract Language
Ethereum provides a Turing complete programming lan-
guage Solidity for developing smart contracts. To support
asynchronous semantics, we extended Solidity and defined

10

a set of syntax for message communication. The extended
Solidity is called Solidity++.

Most of the syntax of Solidity are supported by So-
lidity++, but not including the function calls outside the
contract. The developer can define messages through the
keyword message and define the message processor (Mes-
sageHandler) through the keyword on to implement the
cross - contract communication function.

For example, the contract A needs to call the add ()
method in contract B to update its state based on the return
value. In Solidity, it can be implemented by function call.
The code is as follows:

pragma solidity ^0.4.0;

contract B {
function add(uint a, uint b) returns
(uint ret) {

return a + b;
}

}

contract A {
uint total;

function invoker(address addr, uint a,
uint b) {

// message call to A.add()
uint sum = B(addr).add(a, b);
// use the return value
if (sum > 10) {

total += sum;
}

}
}

In Solidity++, the function call codeuint sum =
B(addr).add(a, b); is no longer valid; instead of that,
contract A and contract B communicate asynchronously by
sending messages to each other. The code is as follows:

pragma solidity++ ^0.1.0;

contract B {
message Add(uint a, uint b);
message Sum(uint sum);

Add.on {
// read message
uint a = msg.data.a;
uint b = msg.data.b;
address sender = msg.sender;
// do things
uint sum = a + b;
// send message to return result
send(sender, Sum(sum));

}

}

contract A {
uint total;

function invoker(address addr, uint a,
uint b) {

// message call to B
send(addr, Add(a, b))
// you can do anything after sending
// a message other than using the
// return value

}
Sum.on {

// get return data from message
uint sum = msg.data.sum;
// use the return data
if (sum > 10) {

total += sum;
}

}
}

In the first line ,code pragma solidity++ 0̂.1.0; in-
dicates that the source code is written in Solidity++ but
will not be compiled directly with the Solidity compiler to
avoid that the compiled EVM code does not conform to the
expected semantics. Vite will provide a specialized compiler
for compiling Solidity++. This compiler is partially forward
compatible: if there is no Solidity code that conflict with
the Vite semantics, it can be compiled directly, otherwise
the error will be reported. For example, the syntax of
local function calls, transfers to other accounts will remain
compatible; obtaining the return value of the cross contract
function call, as well as the monetary unit ether, will not
be compiled.

In contract A, when the invoker function is called,
the Add message will be sent to the contract B, which is
asynchronous and the result will not be returned immedi-
ately.Therefore, it is necessary to define a message processor
in A by using the keyword on to receive returned result and
update the state.

In contract B, the message Add is monitored. After
processing, a Sum message is sent to the sender of the
message Add to return the result.

Messages in Solidity++ will be compiled into CALL
instructions and a request transaction will be added to
the ledger. In Vite, ledgers serve as message middleware
for asynchronous communication between contracts. It en-
sures reliable storage of messages and prevents duplication.
Multiple messages sent to a contract by the same contract
can guarantee FIFO (First In First Out); messages sent by
different contracts to the same contract do not guarantee
FIFO.

It should be noted that the events in Solidity (Event)
and the messages in Solidity++ are not the same concept.
Events are sent indirectly to front through the EVM log.

11

5.4 Standard Library
Developers who develop smart contracts on Ethereum are
often plagued by the lack of standard libraries in Solidity.
For example, loop verification in the Loopring protocol must
be performed outside the chain, one of the important reasons
is that floating-point computing function is not provided in
Solidity, especially the n square root [1][1] for the floating
numbers.

In EVM, a pre deployed contract can be called by
DELEGATECALL command to realize the function of li-
brary function. Ethereum also provides several Precompiled
Contract, which is mainly a few Hash operations. But these
functions are too simple to meet the complex application
needs.

Therefore, we will provide a series of standard libraries
in Solidity++, such as string processing, floating point oper-
ations, basic mathematical operations, containers, sorting,
and so on.

Based on performance considerations, these standard
libraries will be implemented in a local extension (Native
Extension) way, and most of the operations are built into
the Vite local code, and the function is called only through
the DELEGATECALL instruction in the EVM code.

The standard library can be extended as needed, but
because the state machine model of the whole system is
deterministic, it can not provide functions like random
numbers. Similar to Ethereum, we can simulate pseudo
random numbers through the hash of snapshot chains.

5.5 Gas
There are two main functions for Gas in the Ethereum , the
first one is to quantify the computing resources and storage
resources consumed by EVM code execution, and the second
is to ensure that the EVM code is halted. According to
the computability theory, the Halting Problem on Turing
machines is an incomputable problem [27]. That means, it
is impossible to determine whether a smart contract can be
stopped after limited execution by analyzing the EVM code.

Therefore, the gas calculation in EVM is also retained in
Vite. However, there is no Gas Price concept In Vite. Users
do not buy the gas for an exchange by paying the fees, but
through a quota based model to obtain computing resources.
The calculation of quotas will be discussed in detail later in
the chapter ”economic model”.

6 Economic Model
6.1 Native Token
In order to quantify platform computing and storage re-
sources and encourage nodes to run, Vite has built a native
token ViteToken. The basic unit of token is vite, the smallest
unit is attov„1 vite = 1018 attov.

The snapshot chain is the key to the security and
performance of the Vite platform. In order to incite node to
participate in the transaction verification, the Vite protocol
sets up the forging reward for the production of the snapshot
block.

On the contrary, when users issue new tokens, deploy
contracts, register VNS domain names 1 and obtain resource
quotas, they need to consume or mortgage ViteToken.

Under the combined action of these two factors, it is
conducive to optimizing the allocation of system resources.

6.2 Resource Allocation
Since Vite is a common dApp platform, the capabilities of
smart contracts deployed on them vary, and each different
smart contract has different requirements for throughput
and delay. Even for the same smart contract, performance
requirements at different stages are different.

In the design of the Ethereum, each transaction needs
to be assigned a gas price when launching, so as to compete
with other transactions to write accounts. This is a typical
bidding model, which can effectively control the balance
between supply and demand in principle. However, user
is difficult to quantify the current supply and demand
situation, and can not predict the price of other com-
petitors, therefore market failure occurs easily. Moreover,
the resources competing for each bid are directed against
one transaction, and there is no agreement on the rational
allocation of resources according to the account dimension.

6.2.1 Quota Calculation

We have adopted a quota based resource allocation protocol
in Vite, which allows users to obtain higher resource quotas
in three ways:

• A PoW is calculated when the transaction is initiated;

• Mortgage a certain amount of vite in the account;

• To destroy a small amount of vite in one time.
The specific quotas can be calculated through the follow-

ing formula:

Q = Qm ·
(

2

1 + exp (−ρ× ξ⊤)
− 1

)
(6)

Among them, Qm is a constant, representing the upper
limit of a single account quota, which is related to the
total throughput of the system and the total number of
accounts.ξ = (ξd, ξs, ξf) is a vector that represents the cost
of a user for obtaining a resource: ξd is the PoW difficulty
that the user calculates when generating a transaction, ξs
is the vite balance of the mortgage in the account, and ξf
is the one-time cost that the user is willing to pay for the
increase of the quota. It should be noted that ,ξf is different
from the handling fee. These vite will be destroyed directly
instead of paid to the miners.

1refer to 7.2 naming service

12

In the formula, the vector ρ = (ρd, ρs, ρf) represents the
weight of the three way of obtaining the quota, that is, the
quota obtained by the destruction of 1 vite is equivalent to
the mortgaged ρs/ρf vite.

It can be seen from this formula that if the user neither
mortgages vite nor pays the one-time cost, it is necessary
to calculate a PoW, otherwise there will be no quotas to
initiate a transaction, which can effectively prevent dust
attacks and protect the system resources from being abused.
At the same time, this formula is a Logistic function. It is
relatively easy for users to get lower quotas, thereby reducing
the threshold of low frequency users; and high frequency
users need to invest a lot of resources in order to obtain
higher quotas. The extra costs they pay will increase the
benefits of all users.

6.2.2 Resource Quantification

Because snapshot chain is equivalent to a global clock, we
can use it to quantify the resource usage of an account
accurately. In each transaction, the Hash of a snapshot
block is quoted, the height of the snapshot block is took as
the timestamp of the transaction. Therefore, according to
the difference between the two transaction timestamps, we
can judge whether the interval between the two transactions
is long enough.

Figure 9: snapshot chain as a global clock

As shown above, account A generated 4 transactions
in 2 time intervals, while account B generated only 2
transactions. Therefore, the average TPS of A in this period
is 2 times that of B. If it’s just a transfer transaction,
the average TPS of the quantified account is enough. For
smart contracts, each exchange has a different consumption
of resources, so it is necessary to accumulate gas for each
transaction to calculate the average resource consumption
for a period of time. The average resource consumption of

the recent k transactions in an account chain with a height
of ”n” is:

Costk(Tn) =
k ·

∑n
i=n−k+1 gasi

timestampn − timestampn−k+1 + 1
(7)

Among them, for a transaction Tn, timestampn is the
timestamp of the transaction, that is, the height of the
snapshot block it refers to; gasn is the fuel consumed for
the transaction.

When verifying a transaction, the node will determine
whether the quota satisfies the condition: Cost(T) ≤ Q,
and if it is not satisfied, the transaction will be rejected.
In this case, users need to repackage a transaction, increase
quotas by paying a one-time fee, or wait for a period of time
to quote a higher snapshot in the transaction.

6.2.3 Quota Lease

If a user holds abundant vite assets, but does not need to
utilize so many resource quotas, he can choose to rent his
quota to other users.

The Vite system supports a special type of transaction to
transfer the right to use an account resource quota. In this
transaction, the number of vite that can be mortgaged, the
address of a transferee, and the duration of a lease can be
specified. Once the transaction is confirmed, the resource
quota corresponding to the amount of the token will be
included in the assignee’s account. Once the lease time is
exceeded, the quota will be calculated into the transferor
account. The unit of leasing time is second. The system
will be converted into the height difference of the snapshot
block, so there may be some deviation.

The leasing income can be obtained by the user. The
Vite system only provides a quota transfer transaction, and
the pricing and payment of the leasing can be achieved
through a third party smart contract..

6.3 Asset Issurance
In addition to native token ViteToken, Vite also supports
users to issue their tokens. The issue of tokens can be done
through a special transaction, Mint Transaction. The target
address of the mint transaction is 0. In the field data of
the transaction, the parameters of the token are specified as
follows:

Mint: {
name: "MyToken",
totalSupply: 99999999900000000000000000,
decimals: 18,
owner: "0xa3c1f4...fa",
symbol: "MYT"

}

Once the request is accepted by the network, the vite
included in the mint transaction will be deducted from the

13

initiator account as the mint transaction fee. The system
records the information of the new token and assigns a
token_id to it. All the balances of the newly generated
tokens will be added to the owner address, that is to say,
the owner account is the genesis account of the token.

6.4 Cross Chain Protocol
In order to support cross chain value transfer of digital assets
and eliminate ”value island”, Vite designed a Vite Cross-
chain Transfer Protocol (VCTP).

For every asset that needs cross-chain transmission on
the target chain, a token that corresponds to it is needed in
the Vite as the voucher of the target Token circulating within
the Vite, which is called the ToT (Token of Token). For
example, if you want to transfer the ether in the Ethereum
account to Vite, you can issue a ToT with an identifier of
ETH in Vite, the initial quantity of TOT should be equal
to the total quantity of ether.

For each target chain, there is a Gateway Contract on
Vite to maintain the mapping relationship between Vite
transactions and target chain transactions. In the consensus
group where the contract is located, the node responsible for
generating blocks is called VCTP Relay. VCTP Relay needs
to be the Vite node and the full node of the target chain at
the same time, and listen transactions on both sides. On
the target chain, we also need to deploy a Vite Gateway
Contract.

Before VCTP Relay starts to work, the corresponding
ToT in Vite should be transferred to the gateway contract.
After that, the supply of ToT can only be controlled by the
gateway contract, and no one can be added to ensure the 1:
1 exchange ratio between the ToT and the target asset. At
the same time, the assets on the target chain are controlled
by the Vite gateway contract, and no user can use it, so as
to ensure that ToT has a full acceptance reserve.

Figure 10: Cross Chain Protocol

The above picture is an example of the cross chain value
transmission between the Vite and the Ethereum. When
the Ethereum user E1 wants to transfer the token from
the Ethereum to the Vite, it can send a transaction to the
Vite gateway contract address V , while the user’s address
A on the Vite is placed in the parameter. The balance of
the transfer will be locked in the gateway contract account
and become part of the ToT reserve. After listening to the
transaction, the VCTP relay node generates a corresponding
account sending transaction of Vite, sending the same
amount of ToT to the user’s account A in the Vite. In
the picture, 1⃝ and 2⃝ respectively indicate that E1 and E2
transfer to Vite account A and B. It should be noted that if
the user does not specify the Vite address when transferring,
the contract will reject the transaction.

The reverse flow is shown in 3⃝, When the user A
launches transfering from the Vite account to the Ethereum
account, a transaction will be sent to the Vite gateway
contract, transfers to a certain quantity of ToT, and specifies
the reception address E1 of the Ethereum in the transaction.
The VCTP relay node will generate the corresponding
response block on the Ethereum Gateway contract, and
package a transaction of the Ethereum to the Vite gateway
contract on the Ethereum. In the Ethereum , the Vite gate-
way contract will verify whether this transaction is initiated
by a trusted VCTP relay, and then the same amount of ether
is transferred from the Vite gateway contract to the target
account E1.

All cross chain relay nodes will monitor the target
network, and they can verify whether each cross chain trans-
action is correct and reach consensus within the consensus
group. But snapshot consensus group will not monitor the
transaction of the target chain, nor will it verify whether
the mapping between the two chains is correct. If the
target network is rolled back or hard forked, the mapped
transactions in the Vite system cannot be rolled back;
similarly, if the cross chain transactions in the Vite are rolled
back, the corresponding transaction of the target network
can not be rolled back at the same time. Therefore, when
doing cross - chain transactions, it is necessary to deal with
transaction rollback in contract logic. At the same time, as
described in the 4.4 part, we need to set a delay parameter
for the cross chain Relay consensus group.

6.5 Loopring Protocol
Loopring protocol [1] is an open protocol to build a decen-
tralized asset trading network. Compared to other DEX
solutions, the Loopring protocol is based on the multiparty
loop matching, which provides a dual authorization technol-
ogy to prevent preemptive transactions and is fully open.

We build the Loopring protocol into Vite, which is
conducive to promoting the circulation of digital assets in
Vite, so that the whole value system can be circulated. In
this value system, users can issue their own digital assets,
transfer assets outside the chain through VCTP, and use

14

the Loopring protocol to achieve asset exchange. The whole
process can be completed within the Vite system and is
completely decentralized.

In Vite, Loopring Protocol Smart contract (LPSC) is a
part of the Vite system. Asset transfer authorization and
multi-party atomic protection are all supported in the Vite.
The Loopring relay is still open to fully integrate with its
own ecosystem.

Users can use vite to pay for asset exchange transactions,
so the earned token by miners of Looping who perform loop
matching in the Vite platform is still vite.

7 Other Designs
7.1 Scheduling
In the Ethereum, smart contracts are driven by transactions,
and the execution of contracts can only be triggered by
users initiating a transaction. In some applications, a timing
scheduling function is needed to trigger the execution of a
contract through a clock.

In Ethereum, this function is achieved through third
party contracts.1, performance and security are not guar-
anteed. In Vite, we add the timing scheduling function to
the built in contract. The users can register their scheduling
logic into the timed scheduling contract. The public consen-
sus group will use the snapshot chain as a clock, and send
the request transaction to the target contract according to
the user defined scheduling logic.

There is a specialized Timer message in Solidity++.
Users can set up their own scheduling logic in the contract
code through Timer.on.

7.2 Name Service
In Ethereum, the contract will generate an address to
identify a contract when it is deployed. There are two
problems in identifying contracts with addresses:

• � An address is an identifier with 20 bytes without
meaning. It is unfriendly to users and inconvenient to
use.

• � Contracts and addresses are one-to-one. They cannot
support contract redirection.

In order to solve these two problems, the developer
of Ethereum has provided a third party contract ENS 2.
However, in the actual scenario, the use of naming services
will be very frequent, and the use of third party contracts
can not guarantee the global uniqueness of naming, so we
will build a name service VNS (ViteName Service) in Vite.

Users can register a set of names which is easy to remem-
ber and resolve them to the actual address through VNS.

Names are organized in the form of domain names, such as
vite.myname.mycontract. The top-level domain name will
be retained by the system for specific purposes. For example,
vite.xx represents Vite address, and eth.xx represents an
Ethereum address. The second level domain name is open to
all users. Once the user owns the second level domain name,
the subdomain can be expanded arbitrarily. The domain
name owner can modify the address directed by the domain
name at any time, so this function can be used for contract
upgrading.

The length of the domain name is not restricted. In VNS,
the hash of the domain name is actually stored. The target
address can be a non Vite address of less than 256 bit, which
can be used for cross chain interaction.

It should be noted that VNS is different from the smart
contract Package specification EIP1903 in Ethereum. VNS
is a name resolution service, the name is established at
runtime, and the resolution rules can be dynamically modi-
fied; and EIP190 is a package management specification, the
namespace is static, and it is established at compile time.

7.3 Contract Update
The smart contract of Ethereum is immutable. Once
deployed, it can not be modified. Even if there is a bug in
the contract, it can not be updated. This is very unfriendly
to developers and makes dApp’s continuous iteration very
difficult. Therefore, Vite needs to provide a scheme to
support smart contract update.

In Vite, the process of contract updating includes:
A. Deploys a new version of the contract to inherit the

status of the original contract.

B. Points the name of the contract to the new address in
VNS.

C. Removes the old contract through the SELFDE-
STRUCT instruction

These three steps need to be completed at the same time,
and the Vite protocol ensures the atomicity of the operation.
Developers need to ensure that the old contract data are
correctly processed in the new version contract.

It should be noted that the new contract will not inherit
the address of the old contract. If quoted by the address,
the transaction will still be sent to the old contract. This
is because different versions of contracts are essentially two
completely different contracts, whether they can be modified
dynamically or not, depending on the semantics of contracts.

In Vite systems, smart contracts are actually divided
into two types, the first one is the background of a dApp,
and its business logic is described; and the second is a kind
of contract that maps the real world. The previous one
is equivalent to an application’s background service, which

1Ethereum Alarm Clock is a third party contract used to schedule the execution of other contracts, refer to http://www.
ethereum-alarm-clock.com/

2Ethereum Name Service is a third party contract used for name resoluton, refer to https://ens.domains/
3EIP190 Ethereum Smart Contract Packaging Specification,refer to https://github.com/ethereum/EIPs/issues/190

15

needs to be continuously iterated through an upgrade; the
latter is equivalent to a contract, and once it comes into
effect, no modification can be made, otherwise it is a breach
of contract. For such a contract that is not allowed to
be modified, it can be decorated with keyword static in
Solidity++, for example:

pragma solidity++ ^0.1.0;

static contract Pledge {
// the contract that will never change

}

7.4 Block Pruning
In a ledger, any transaction is immutable, and users can only
add new transactions to the ledger without altering or delet-
ing historical transactions. Therefore, with the operation of
the system, the ledgers will become bigger and bigger. If
a new node who joining the network wants to restore the
latest status, starting from the genesis block and redoing
all the historical transactions. After running the system
for a period of time, the space occupied by the account
book and the time consumed for redoing transactions will
become unacceptable. For the high throughput system of
Vite, the rate of growth will be much higher than Bitcoin
and Ethereum, so it is necessary to provide a technique for
clipping the blocks in the ledgers.

Block clipping refers to the deletion of historical transac-
tions that cannot be used in the ledgers, and does not affect
the operation of the transactional state machine. So, which
transactions can be safely deleted? It depends on which
scenario the transaction will be used, including:

• Recovery.The primary role of a transaction is to
recover status. Because in Vite, snapshot chain stores
snapshot information of account status, nodes can
recover state from a snapshot block. All transactions
before lastTransaction in the snapshot block can be
tailored to state recovery.

• Verification of transactions.To verify a new trans-
action, it needs to verify the exchange’s previous
transaction in the account chain, and if it is a response
transaction, it also needs to verify the corresponding
request transaction. Therefore, in the tailored ac-
counting ledgers, at least one last transaction should
be retained in each account chain. In addition, all
open request transactions cannot be tailored because
their hashes may be referenced by subsequent response
transactions.

• Calculate quotas.Whether a transaction meets the
quota is calculated by judging the sliding average of
the last 10 transaction resources, so at least the last 9
transactions need to be saved on each account chain.

• Inquire about history. If the node needs to query
the transaction history, the transaction involved in the
query will not be tailored.

According to different usage scenarios, each node can
choose several combinations from the above clipping strat-
egy. It is important to note that clipping involves transac-
tions in ledgers, while snapshot chains need to be kept intact.
In addition, what is recorded in the snapshot chain is the
hash of the contract state. When the account is clipped, the
corresponding state of the snapshot needs to be kept intact.

In order to ensure the integrity of Vite data, we need
to retain some ”Full nodes” in the network to save all
transaction data. Snapshot consensus group nodes are full
nodes, and in addition, important users such as exchanges
may also become full nodes.

8 Governance
For a decentralized application platform, an efficient gover-
nance system is essential for maintaining a healthy ecosys-
tem. Efficiency and fairness should be considered when
designing governance systems.

The governance system of Vite is divided into two parts:
on-chain and off-chain. On-chain is a voting mechanism
based on protocol, and off-chain is the iteration of the
protocol itself.

On the voting mechanism, it is divided into two types:
Global voting and local voting. The global voting is based on
the vite held by the user to calculate the rights as the voting
weight. The global voting is mainly used for the election of
the snapshot consensus group proxy node. The local vote
is aimed at a contract. When the contract is deployed, a
token is designated as the basis for voting. It can be used
to elect the agent nodes of the consensus group in which the
contract is located.

Besides the verification of transactions, the agent node
of snapshot consensus group has the right to choose whether
to upgrade the Vite system Incompatibility. The delegated
consensus group proxy node has the right to decide whether
to allow the contract to be upgraded so as to avoid potential
risks arising from the escalation of contracts. The agent
node is used to upgrade decision-making power on behalf of
users in order to improve the efficiency of decision-making
and avoid the failure of decision-making due to insufficient
participation in voting. These proxy nodes themselves are
also restricted by consensus protocol. Only if most 1 agent
nodes are passed, will the upgrade take effect. If these
agents do not fulfill their decision-making power according
to the user’s expectations, users can also cancel their proxy
qualification by voting.

The governance of off-chain is realized by the community.
Any Vite community participant can propose an improve-
ment plan for the Vite protocol itself or related systems,
which is called VEP (Vite Enhancement Proposal). VEP

1according to DPoS protocol, the valid majority is 2/3 of total agent nodes.

16

can be widely discussed in the community and whether
to implement the solution is decided by Vite ecological
participants. Whether the protocol will be upgraded for
the implementation of a VEP will be ultimately decided by
the agent node. Of course, when the differences are large,
you can also start a round of voting on the chain to collect a
wide range of user opinions, and the proxy node will decide
whether to upgrade according to the result of the vote.

Although some Vite participants may not have enough
vite tokens to vote for their opinions. But they can freely
submit VEP and fully express their views. The users who
have the right to vote must take full account of the health
of the whole ecology for their own Vite rights, and therefore
take the views of all the ecological participants seriously.

9 Tasks in future
Transaction verification on snapshot chains is a major per-
formance bottleneck of the system. Because Vite adopts
asynchronous design and DAG account structure, transac-
tion validation can be executed in parallel. However, due
to the dependence between the transactions of different
accounts, the degree of parallelism will be greatly restricted.
How to improve the parallelism of transaction verification or
adopt a distributed verification strategy will be an impor-
tant direction for future optimization.

Some shortcomings exist in the current HDPoS consen-
sus algorithm as well. It is also an optimization direction
to improve the consensus algorithm, or to be compatible
with more consensus algorithms in the delegated consensus
group.

In addition, the optimization of virtual machine is also
very important for reducing system delay and improving sys-
tem throughput. Because of the simple design of EVM and
the simplification of the instruction set, it may be necessary
to design a more powerful virtual machine in the future and
define a smart contract programming language with more
ability to describe and less security vulnerabilities.

Finally, besides the Vite core agreement, the construc-
tion of ancillary facilities supporting ecological development
is also an important topic. In addition to SDK support
for dApp developers, there is much work to do in dApp
foreground ecosystem construction. For example, you can
build a dApplet engine based on HTML5 in the mobile
wallet application of Vite, allowing developers to develop
and publish dApp at low cost.

10 Summary
Compared with other similar projects, the characteristics of
Vite include:

• High throughput.Vite uses the DAG ledger struc-
ture, the orthogonal transaction can be written in par-
allel to the book; in addition, multiple conconsensus
groups do not depend on each other in the HDPoS
consensus algorithm, and can work in parallel; the
most important thing is that the Vite’s inter contract
communication is based on the asynchronous model
of the message. All these are helpful to improve the
throughput of the system.

• Low delay.Vite uses the HDPoS consensus algorithm
to collaborate to complete the rotation production
block through the proxy node, without the need to
calculate PoW, the block interval can be reduced to
1 second, which is beneficial to reduce the delay of
transaction confirmation.

• Scalability.In order to meet the scalability require-
ments, Vite makes a single degree of freedom limit on
the transaction, grouping the transactions in the ac-
count according to the account dimension, allowing the
block production of different accounts to be completed
by different nodes, and to remove the ACID semantics
of the cross contract calls to BASE semantics based
on the message. In this way, nodes no longer need to
save all the state of the world, and the data are saved
in the entire distributed network in sharding mode

• Usability.The improvements of Vite’s usability in-
clude providing standard library support in Solid-
ity++, dedicated to processing message syntax, timing
scheduling of contract, VNS naming services, support
of contract upgrading, and so on.

• Value circulation.Vite supports digital asset is-
suance, cross chain value transfer, token exchange
based on Loopring protocol, and so on, forming a
complete value system. From the user’s point of view,
Vite is a fully functional decentralized exchange.

• Economy.Because Vite adopts quota based resource
allocation model, lightweight users who do not trade
frequently do not have to pay high fees or gas charges.
Users can choose a variety of ways to change the
calculation. Extra quota can also be transferred
to other users through quota leasing agreement to
improve the efficiency of system resource utilization.

11 Thanks
Sincerely, we would like to thank our consultants for their
guidance and assistance to this article. Especially We would
like to appreciate the contribution of Loopring team and
Loopring community to this project.

17

References
[1] Daniel Wang, Jay Zhou, Alex Wang, and Matthew Finestone. Loopring: A decentralized token exchange protocol.

URL https://github.com/Loopring/whitepaper/blob/master/en_whitepaper.pdf.

[2] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[3] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper, 151,
2014.

[4] Vitalik Buterin. Ethereum: a next generation smart contract and decentralized application platform (2013). URL
http://ethereum. org/ethereum.html, 2017.

[5] Chris Dannen. Introducing Ethereum and Solidity. Springer, 2017.

[6] Jae Kwon and Ethan Buchman. Cosmos a network of distributed ledgers. URL https://cosmos.network/whitepaper.

[7] Anonymous. aelf - a multi-chain parallel computing blockchain framework. URL
https://grid.hoopox.com/aelf_whitepaper_en.pdf, 2018.

[8] Anton Churyumov. Byteball: A decentralized system for storage and transfer of value. URL
https://byteball.org/Byteball.pdf.

[9] Serguei Popov. The tangle. URL https://iota.org/IOTA_Whitepaper.pdf.

[10] Colin LeMahieu. Raiblocks: A feeless distributed cryptocurrency network. URL
https://raiblocks.net/media/RaiBlocks_Whitepaper__English.pdf.

[11] Anonymous. Delegated proof-of-stake consensus, a robust and flexible consensus protocol. URL
https://bitshares.org/technology/delegated-proof-of-stake-consensus/.

[12] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An adaptively-secure, semi-
synchronous proof-of-stake blockchain. URL https://eprint.iacr.org/2017/573.pdf, 2017.

[13] Anonymous. Eos.io technical white paper v2. URL https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md.

[14] Dai Patrick, Neil Mahi, Jordan Earls, and Alex Norta. Smart-contract value-transfer protocols on a distributed
mobile application platform. URL https://qtum.org/uploads/files/cf6d69348ca50dd985b60425ccf282f3.pdf, 2017.

[15] Ed Eykholt, Lucius Meredith, and Joseph Denman. Rchain platform architecture. URL http://rchain-
architecture.readthedocs.io/en/latest/.

[16] Anonymous. Neo white paper a distributed network for the smart economy. URL http://docs.neo.org/en-
us/index.html.

[17] Anonymous. Byzantine consensus algorithm. URL https://github.com/tendermint/tendermint/wiki/Byzantine-
Consensus-Algorithm.

[18] Shapiro Marc, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free replicated data types. URL
https://hal.inria.fr/inria-00609399v1, 2011.

[19] Deshpande and Jayant V. On continuity of a partial order. Proc. Amer. Math. Soc. 19 (1968), 383-386, 1968.

[20] Weisstein and Eric W. Hasse diagram. URL http://mathworld.wolfram.com/HasseDiagram.html.

[21] Chunming Liu. Snapshot chain: An improvement on block-lattice. URL
https://medium.com/@chunming.vite/snapshot-chain-an-improvement-on-block-lattice-561aaabd1a2b.

[22] Anonymous. Problems. URL https://github.com/ethereum/wiki/wiki/Problems.

[23] Dantheman. Dpos consensus algorithm - the missing white paper. URL https://steemit.com/dpos/@dantheman/dpos-
consensus-algorithm-this-missing-white-paper.

[24] Theo Haerder and Andreas Reuter. Principles of transaction-oriented database recovery. ACM Comput. Surv.,
15(4):287–317, December 1983.

18

[25] Dan Pritchett. Base: An acid alternative. Queue, 6(3):48–55, May 2008.

[26] Jeff Hanson. Event-driven services in soa. URL https://www.javaworld.com/article/2072262/soa/event-driven-
services-in-soa.html.

[27] Michael Sipser. Introduction to the Theory of Computation. PWS Publishing, second edition, 2006.

Appendices
Appendix A EVM Instruction set
A.0.1 0s: Stop and algebraic operation instruction set

No. Words POP PUSH Semantics in EVM Semantics in Vite
0x00 STOP 0 0 Stop to Excute. Sanme semantics
0x01 ADD 2 1 Add two operands. Same semantics
0x02 MUL 2 1 Multiplying two operands. Same semantics
0x03 SUB 2 1 Subtracting two operands. Same semantics
0x04 DIV 2 1 Divide two operands Same semantics

If the divisor is 0
then returns 0

0x05 SDIV 2 1 Divided with symbol. Same semantics
0x06 MOD 2 1 Modulus Operation. Same semantics
0x07 SMOD 2 1 Modulus with symbol. Same semantics
0x08 ADDMOD 3 1 Add the first two Same semantics

operands and module with 3rd
0x09 MULMOD 3 1 Mmultiply the first two Same semantics

operands and module with 3rd
0x0a EXP 2 1 The square of two operands. Same semantics
0x0b SIGNEXTEND 2 1 Symbol extension. Same semantics

19

A.0.2 10s: Comparison and bit operation instruction set

No. Words POP PUSH Semantics in EVM Semantics in Vite
0x10 LT 2 1 less than. Same semantics
0x11 GT 2 1 greater than. Same semantics
0x12 SLT 2 1 less than with symbol. Same semantics
0x13 SGT 2 1 greater than with symbol. Same semantics
0x14 EQ 2 1 equal to. Same semantics
0x15 ISZERO 1 1 if it is 0. Same semantics
0x16 AND 2 1 And by bit. Same semantics
0x17 OR 2 1 Or by bit. Same semantics
0x18 XOR 2 1 Xor by bit. Same semantics
0x19 NOT 1 1 Nor by bit. Same semantics
0x1a BYTE 2 1 Take one of byte Same semantics

from the second operands.

A.0.3 20s: SHA3 instruction set

No. Words PoP PUSH Semantics in EVM Semantics in Vite
0x20 SHA3 2 1 Calculate Keccak-256 hash. Same semantics

20

A.0.4 30s: Environmental information instruction set

No. Words POP PUSH Semantics in EVM Semantics in Vite
0x30 ADDRESS 0 1 Obtain address . Same semantics

of current account
0x31 BALANCE 1 1 Obtain the balance Same semantics.

of an account.
returned is the
vite balance of account

0x32 ORIGIN 0 1 Obtain the sender Different samantics
addresss of original transaction

return 0 forever
Vite doesn’t maintain
the causal relationship
between internal transaction
and user transaction.

0x33 CALLER 0 1 Obtain the address Same semantics.
of direct caller.

0x34 CALLVALUE 0 1 Obtain the transferred Same semantics
amount in called transaction.

0x35 CALLDATALOAD 1 1 Obtain the parameter Same semantics
in this calling

0x36 CALLDATASIZE 0 1 Obtain size of Same semantics
parameter
data in this calling.

0x37 CALLDATACOPY 3 0 Copy called parameter Same semantics
data into memory.

0x38 CODESIZE 0 1 Obtain the size Same semantics
of the running code in
current environment.

0x39 CODECOPY 3 0 Copy the running Same semantics
code in current environment
into memory.

0x3a GASPRICE 0 1 Obtain the gas . Different samantics
price in current enviroment

,return 0 forever.
0x3b EXTCODESIZE 1 1 Obtain the code Same semantics

size of an account.
0x3c EXTCODECOPY 4 0 Copy the code of. Same semantics

an account into memory
0x3d RETURNDATASIZE 0 1 Obtain data size Same semantics

of returned from
previous calling.

0x3e RETURNDATACOPY 3 0 Copy the returned Same semantics
data calling
previously into memory
into memory.

21

A.0.5 40s: Block info instructions set

No. Words POP PUSH Semantics in EVM Semantics in Vite
0x40 BLOCKHASH 1 1 Obtain hash of a block. Different semantic.

return Hash of
corresponing snapshot block.

0x41 COINBASE 0 1 Obtain the address. Different semantic.
of miner beneficiary
in current block

return 0 forever.
0x42 TIMESTAMP 0 1 Return timestamp Different semantic.

of current block.
return 0 forever.

0x43 NUMBER 0 1 Return the number Different semantic.
or current block.

Return the number of
responding transaction
block in account chain

0x44 DIFFICULTY 0 1 Return the difficulty Different semantic.
of the block.

return 0 forever.
0x45 GASLIMIT 0 1 Return the gas. Different semantic.

limitation of the block
return 0 forever.

A.0.6 50s: Stach�Memory�Storege�Control stream operation instruction set

No. Words POP PUSH Semantics in EVM Semantics in Vite
0x50 POP 1 0 Pop one data Same semantics

from top of stack.
0x51 MLOAD 1 1 load a word from memory. Same semantics
0x52 MSTORE 2 0 Save a word to memory Same semantics
0x53 MSTORE8 2 0 Save a byte to memory. Same semantics
0x54 SLOAD 1 1 Load a word from storage. Same semantics
0x55 SSTORE 2 0 Save a word into storage. Same semantics
0x56 JUMP 1 0 Jump instructions. Same semantics
0x57 JUMPI 2 0 Jump instructions with condition. Same semantics
0x58 PC 0 1 Obtain program counter’s value. Same semantics
0x59 MSIZE 0 1 Obtain size of memory. Same semantics
0x5a GAS 0 1 Obtain available gas . Different semantic.

return 0 forever.
0x5b JUMPDEST 0 0 Mark a destination of jumping . Same semantics

22

A.0.7 60s and 70s: Stack operation instructions

No. Words POP PUSH Semantics in EVM Semantics in Vite
0x60 PUSH1 0 1 Push one byte object. Same semantics

into top of stack
0x61 PUSH2 0 1 Push two bytes object Same semantics

into top of stack.
...

...
...

...
...

0x7f PUSH32 0 1 Push 32 bytes object Same semantics
(whole word) into
top of stack

A.0.8 80s: Duplication operation instructions

No. Words POP PUSH Semantics in EVM Semantics in Vite
0x80 DUP1 1 2 Duplicate 1st object and Same semantics

push it into top of stack.
0x81 DUP2 2 3 Duplicate 2nd object . Same semantics

and push it into top of stack.
...

...
...

...
...

0x8f DUP16 16 17 Duplicate 16th object Same semantics
and push it into top of stack.

A.0.9 90s: Swap operation instructions

No. Words POP PUSH Semantics in EVM Semantics in Vite
0x90 SWAP1 2 2 Swap 1st and 2nd Same semantics

object in stack.
0x91 SWAP2 3 3 Swap 1st and 3rd Same semantics

object in stack.
...

...
...

...
...

0x9f SWAP16 17 17 Swap 1st and 17th Same semantics
object in stack.

A.0.10 a0s: Log operation instructions

No. Words POP PUSH Semantics in EVM Semantics in Vite
0xa0 LOG0 2 0 Extend log record, Same semantics

no scheme.
0xa1 LOG1 3 0 Extend log record,. Same semantics

1 scheme
...

...
...

...
...

0xa4 LOG4 6 0 Extend log record,. Same semantics
4 schemes

23

A.0.11 f0s: System operation instructions

No. Words POP PUSH Semantics in EVM Semantics in Vite
0xf0 CREATE 3 1 Create a new contract. Same semantics
0xf1 CALL 7 1 Call another contract. Different semantic.

indicate sending
a message to an account
The returned vale is 0 forever.

0xf2 CALLCODE 7 1 Call the code of Same semantics
another contract
Change the status of account.

0xf3 RETURN 2 0 Stop execution Same semantics
and return value.

0xf4 DELEGATECALL 6 1 Call the code of Same semantics
another contract, change
contract, change current
account status keep
original transaction info.

0xfa STATICCALL 6 1 Call another contract, Different semantic.
not allow to change status.

represents to sending
message to a contract,
don’t change status of
target contract.
return 0 forever.needed result
Sending another message through
target contract and return.

0xfd REVERT 2 0 Stop execution and . Same semantics
recover status and return value

no semantics of returning left gas.
0xfe INVALID ∅ ∅ invalid instructions. Same semantics
0xff SELFDESTRUCT 1 0 Stop execution, Same semantics

set the contract
as waiting for deleting
return all balance.

24

