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Abstract

We introduce Injective Protocol, a collision and front-running resistant decentralized ex-
change protocol on the Ethereum network that integrates verifiable delay functions (VDF) as
a proof-of-elapsed-time to resolve same-block order conflicts while preventing front-running at-
tacks. Our proposal is the only decentralized exchange protocol that is fully trustless, publicly
verifiable, resolvable, liquidity neutral, and front-running resistant.
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1 Introduction

Since the early days of cryptocurrency, major centralized cryptocurrency exchanges such as
Mt. Gox [1] have been hacked, resulting in the loss of hundreds of millions of dollars worth of
cryptocurrency. Such occurrences present a clear need for decentralized exchanges where users act
as their own custodians for their funds. Today, modern decentralized exchanges on the Ethereum
network are prone to numerous security vulnerabilities and have several design flaws which hamper
full decentralization and negatively impact user experience. In this paper, we introduce Injective
Protocol - a collision and front-running resistant decentralized exchange settlement logic protocol
on the Ethereum network. We utilize verifiable delay functions (VDF) [2] as a proof-of-elapsed-time
and fized-delay time-lock puzzle to resolve same-block order conflicts and to prevent front-running
attacks. Our protocol is comprised of two components: a settlement logic layer and a trustless relayer
network protocol which allows for sharing of liquidity amongst distinct relayer liquidity pools and
integrates with 0x[3]. More specifically, Injective Protocol is protocol-agnostic and satisfies the
following properties:

o Trustless: The settlement logic does not require a trusted third party or a centralized trade
execution coordinator (TEC) to fairly establish the true sequence of incoming orders.

e Resolvable: Conflicting orders submitted in the same block can be fairly and deterministically
resolved through the settlement logic

o Publicly Verifiable: Incoming orders submit time proofs which the public can use to efficiently
verify that a fair order sequence was executed.

e Liquidity Neutral: The protocol does not make any restrictions on accessibility of different
liquidity pools and allows for open exchange.

We also propose a front-running proof model that offers these additional properties:

e Front-Running Proof: A predatory front-runner cannot intercept incoming orders and manip-
ulate the sequence of order-filling to gain price advantage.

2 Background

2.1 Current State of Decentralized Exchanges

The stateful nature of the Ethereum blockchain results in a time delay between every state (i.e.
each block being mined), which allows for race conditions to manifest between transactions. In
decentralized exchanges with open orderbooks, trade collisions occur when transactions within the
same block contain conflicting orders. As a result, decentralized exchanges such as EtherDelta only
have around a 79%-90% success-rate for trade executions [4] as a direct result of trade-collisions.
Such issues have led decentralized exchanges to adopt different measures to prevent collisions but
all current implementations make numerous tradeoffs in decentralization, trustlessness and liquidity.

Left unresolved, these issues weaken the value proposition of using a decentralized exchange

2.2 Decentralized Exchange Terminology

Within an exchange, there are two parties: makers and takers. Makers submit make orders which
specify an offer to a specified amount of one token for another amount of another token. Takers
view the exchange orderbook (which is solely comprised of make orders) and exchange tokens by
filling make orders.



A trade collision occurs when multiple takers attempt to take the same make order at the
same time. Since only one take order can fill the make order (assuming a simplified model of
no partial fills), there is a failure in trade facilitation which results in one taker having his order
fail. In an ideal DEX, trades (a take order filling a make order) would clear immediately and the
orderbook would be updated accordingly, thus signaling to other traders that the make order in
question is unavailable. However this is impossible for an on-chain orderbook on the Ethereum
network, as orders are submitted as transactions which are included together in a block which then
updates the orderbook once the block is mined into the blockchain. Since blocks are mined around
every 15 seconds, DEX protocols such as 0x are prone to collisions for orders submitted within the
same block period. Ox relayers have attempted to alleviate this issue by employing a continuous,
centralized server that updates the orderbook displayed to the user every time a trade is submitted
through their interface. However, since trade settlement is still enforced through smart contracts
on BEthereum, this mechanism only prevents collisions from traders who use that relayer. Traders
from other relayers targeting the same make order will still face a collision because the order status
is not transmitted to them. Worse yet, front-runners can front-run the orders pending settlement
regardless of the relayer orderbook status.

Front-runners leverage trade collisions to profit from intercepting take orders in DEXs. Since
miners of Ethereum process transactions on a gas-time priority basis, race conditions occur when
the Ethereum mempool exceeds the network’s maximum throughput. Because miners prioritize
transactions with the highest gas fees, a front-runner can exploit this feature by observing a large
pending trade in the mempool and then submitting a colliding trade with a higher gas fee. Since the
miner will likely include the front-runner’s trade before the large trade, the front-runner can profit
from the rise in price as a result of the execution of the large trade. The taker that was front-run
would then experience order failure and would have to resubmit another take order which will likely
be at a worse exchange rate (and would again be susceptible to front-running).

At scale, it is clear that the frequency of collisions would increase as trading volume on DEXs
increase. In order for DEXs to support both a high frequency of orders and high volumes within
orders, collisions must be minimized and the threat of front-running must be eliminated. Otherwise,
high volume traders face the risk of not only having their trades fail, but also their positions exposed
which can result in unfavorable price movements.

Current Exchange Protocols (e.g. IDEX, DDEX, 0x relayers, Airswap, Oasis DEX, etc.)
all either use a centralized server or a trusted third party for order relay and matching. The only
exceptions are EtherDelta which is a fully on-chain DEX that refreshes its orderbook every block
on Ethereum and Paradigm Market which is a Tendermint-based relayer protocol on 0x. Paradigm
Market is a newer proposal which outlines a decentralized relayer protocol but currently has no
implementation at the time of writing. Paradigm’s protocol uses a Tendermint blockchain that
maintains a orderbook using BigchainDB and relies on nodes in its relayer network to relay orders
and reach consensus on the orderbook for each state. Paradigm’s design has several major security
flaws including node front-running, between-state collision, and race-condition front-running. We
consider Paradigm to be a progression in decentralizing relayers and preventing collisions, but it is
fully vulnerable to front-running and therefore unsatisfactory.

Batch Trading was originally proposed[5] as a mechanism in market design to disincentivize
predatory high frequency trading firms in traditional financial markets and was later integrated
in decentralized exchanges by Hallex[6], Omisego[7], and Paradex to prevent front-running and
collisions. In a batch traded exchange, relayers (or more generally, order matchers) have the sole
power to group orders with the same price into a pool and fill multiple orders simultaneously at a
single price, thereby resolving order collisions and removing a front-runner’s ability to profit from
order manipulation. Batch trading is a useful solution that allows for efficient liquidity aggregation
and order matching within a liquidity pool, as it allows for fewer communication rounds between
traders to fill orders. However, traders must trust their order matcher to maintain a fair orderbook
and not front-run or censor their orders. As such, batch trading is neither truly decentralized nor



trustless. Current decentralized exchanges (such as Omisego[7]) implementing batch trading on 0x
further have the weakness of limiting trading to a closed liquidity pool which thus prevents traders
from accessing greater pools of liquidity from other relayers.

The concept of a Trade Execution Coordinator (TEC) was introduced to regulate trades
and make the order matching process more fair. TECs eliminate the threat of front-running and
trade collisions by approving trades and requiring that new trades do not conflict with an existing
approved order. Trade settlement then follows price-time priority. The role of TEC can be played
by a centralized, trusted entity or a group of federated stakeholders. Both do not fully satisfy
trustlessness and decentralization since traders must trust the TEC to act honestly. In practice,
federated stakeholders are also vulnerable to bribery from predatory front-runners as the profit from
bribery can exceed the cost of an inefficient exchange. One potential trustless TEC proposal[4]
specifies hashing the order information first and then the TEC can simply approve the transaction
if the hash was not previously approved. However, this model is susceptible to a grinding attack
where a dishonest TEC reconstructs the trade hash through brute force computation. Currently the
concept of TEC is still a theoretical proposal with no implementations. We find that decentralized
TECs to be a potentially useful mechanism to prevent collisions and front-running if we integrate
our secure, trustless, and decentralized protocol which resolves the aforementioned vulnerability.

Commit-Reveal[4] is a commitment scheme that can also be used to prevent front-running
while maintaining the desired properties of decentralization and trustlessness. The commit-reveal
scheme is fairly simple and requires no trusted-third party: a taker first submits an intention to
perform some trade (ie. filling some make order) in the form of a hashed message that contains
the trade information to the DEX. Then after at least one block is mined, the taker reveals the
trade information to the DEX which in turn verifies the validity of the trade by reconstructing
the hash. Although this setup does not resolve accidental collisions, it prevents front-running from
other actors since trade information is encrypted. We find that this setup is optimal for completely
preventing front-running, but also recognize that it creates a suboptimal user experience since the
order confirmation and settlement require two transactions in different blocks.

In summary, we see that there are multiple proposed solutions to resolve the collision and front-
running issues that DEXs face. However, there is currently yet to be an approach that does not
sacrifice decentralization, trustlessness, liquidity, and user experience.

2.3 Liquidity Aggregation

In order for DEXs to match the user experience of centralized exchanges, orderbooks should have
high amounts of liquidity. In practice, the amount of liquidity that DEXs possess pales in comparison
to centralized exchanges. Efforts to increase liquidity in DEXs are only further hampered by the
fact that many DEXs can only access liquidity from their own pool of traders. To solve this issue,
some relayers of DEXs (e.g. OmegaOne, Enclave, and Totle) have coordinated with each other
to share liquidity pools through liquidity aggregation in order to increase their liquidity. In
liquidity aggregation, an aggregator coordinates with multiple relayers to relay orders from multiple
orderbooks to traders and funnel trades to multiple DEXs. From a trader’s perspective, a liquidity
aggregator DEX will appear to have many more make orders since its orderbook is a combination
of multiple exchanges.

Liquidity aggregation is a natural and elegant solution for combining sharded liquidity and we
view it as essential to enable the DEX ecosystem to scale. However, current liquidity aggregators have
various degrees of centralization and there is limited development for trustless and fully decentralized
liquidity aggregators. Currently, traders must trust aggregators to be honest in displaying the true
state of the aggregated orderbook. A dishonest aggregator could favor certain relayers’ liquidity
pools (e.g. collusion), censor some orders, or even front-run the traders themselves.

Since liquidity aggregators are centralized by nature, it is therefore essential to ensure that ag-
gregators do not have the incentive to act dishonestly. Yet, in the scenario where individual relayers



also act as liquidity aggregators by using liquidity bridges, there is a perverse incentive for relayers to
act dishonestly when orders collide. In the diagram under the Current Ox Ecosystem with Liquidity
Sharing section below, a trader (shown in green) interacting with Relayer A wishes to fill a take
order from Relayer B’s liquidity pool and submits an order to Relayer A to do so. Relayer A then
communicates this order with Relayer B through the Relayer Bridge. Later but within the same
block period, suppose a trader (shown in red) from Relayer B’s liquidity pool submits a conflicting
take order to Relayer B. Assuming that relayer fees are split whenever a relayer bridge is used (which
is standard practice), Relayer B has an incentive to prioritize the order from the trader from its own
liquidity pool, as doing so will allow Relayer B to receive a larger amount of fees.
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Even agsuming that relayers act honestly, there can still be order collisions from conflicting take
orders submitted by traders in the same block. As mentioned in the beginning of this section, the
same race condition occurs which results in trades with the highest gas fee taking precedence. The
underlying reason for this problem is that one cannot fairly and securely determine who should be
the winning taker, as submitted timestamps are unreliable in an asynchronous network. This root
problem motivates the existence of a better protocol which overcomes such limitations and enables
a truly fair and trustless decentralized exchange.

3 Injective Protocol Settlement Logic

In order to resolve the aforementioned issues of front-running and collisions while still enabling
sharing of liquidity in a fully decentralized and trustless way, we introduce Injective Protocol. Injec-
tive Protocol is a novel on-chain settlement logic scheme that establishes a fair sequence of incoming
orders, thereby resolving collisions and front-running. Injective Protocol accomplishes this by us-
ing a publicly verifiable proof-of-elapsed-time construction using verifieble delay functions[2] which
also allows for seamless liquidity sharing between relayers. This settlement logic is also protocol-
agnostic, enabling multiple DEX protocols to settle trades and share liquidity in a fully decentralized
and trustless fashion.

3.1 Preliminary Definitions

Definition 3.1. A market consists of Make Orders and Tuke Orders :

e M is the make order and M,,; is the volume of the make order.
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e T is the take order sent by taker T, with address A. T} is a conflicting or adversarial taker
with address B who submits a take order for the same make order M as T,’s order. We also
define T),,; as the volume of this take order.

Definition 3.2. A simplified implementation of a verifiable delay function (VDF) is a tuple of
algorithms where V' = Setup(\, t), Eval(ek, z), Verify(vk, z, y, m)

e Setup(A) = pp = (ek,vk) takes a security parameter A and generates public parameter pp
that consists an evaluation key ek and a verification key vk. In practice pp will remain static
at the launch of the network. We simplify our definition of VDF by omitting puzzle difficulty
parameter ¢ which was included in the original definition [2] of VDF, since t is incremental in
our protocol and will be submitted as part of the proof.

e Eval(ek,z) = (y,n) takes an input x and generates y and proof w. In practice Eval is a
deterministic, parallelize-hard function that has an exponential gap between evaluation and
verification.

e Verify(vk,z,y,m) = {True, False} is a deterministic verification algorithm that takes the input
x, output y, and outputs a boolean statement True or False. In practice (especially for VDF
candidates that do not satisfy decodable property) the algorithm will also evaluate proof .

Definition 3.3. Tuker computes VDF locally and continuously submits the following to the settle-
ment logic smart contract

Commit(m, t, z, y¢, vk, T, Sr)

where 7 is a list of proof generated from the verification algorithm (for simplicity, we abbreviate
{m|t € N} as m), ¢ is the number of iterations of Eval that the taker has computed, x is the starting
input encoding the take order trade information 7', y; is the output of the t*® iteration of Eval, T" is
the take order the taker desires, and S, = Sig(sk,m = nonce,—_1||T')) is the taker’s signature with
his private key sk over the nonce of previous block concatenated with the take order.

Definition 3.4. The settlement logic receives Commit and evaluates it with
Confirm(m, t, z,y, vk, T, S;)

which verifies whether Tp,’s Commit is valid using Verify(vk,z,y,7) = {True, False}. Suppose
within a given block, there are n Commits which signal the desire to take a given make order M.
When the settlement logic receives more than one Commit for a make order, it will select the Commit
with the t,, corresponding to max{t,|n € N} from the t’s obtained from each of the n conflicting
Commit functions as a temporary winner of make order M. We also define § as the delay in number
of rounds (blocks) between the first temporary winner and the resolution of permanent winner. §
can be parameterized for decentralized exchanges as desired and is discussed in greater detail in the
next section.

Definition 3.5. In the most simple case, assuming Myor < To(wor) + Th(vory Where the combined
take orders have a higher volume than the make order volume, a collision occurs when T, and T}
both submit a take order for the same M within the same round r and the settlement logic cannot
deterministically select the winning taker in a fair fashion. Front-Running occurs when T, submits
a valid take order first but an adversarial T} submits the same take order for M in an attempt to
take M before T, is confirmed (typically done by simply using a higher gas fee), even though T}, was
sent after T,.



3.2 Verifiable Delay Functions as Proof of Elapsed Time

We utilize verifiable delay functions (VDF) as a mechanism for proof of elapsed time where a taker
can submit a time proof to the settlement logic which verifies whether the taker has indeed observed
the order for the duration he claims from Commit. Beyond satisfying sequential and efficiently
verifiable properties proposed in VDF[2], we also require our VDF candidates to be incremental,
allowing hardness parameter ¢ to be specified in the proof instead of in Setup.

For the taker submitting take order T at a given block r, we denote the taker’s starting value x
as:

x = H(Sig(sk,m))

where m = nonce,—_1||T (i.e. the nonce of the previous block concatenated with the take order),
sk is Ty’s secret key, and Sig(sk,m) is a digital signature on message m. For simplicity, we denote
Sy = Sig(sk,m). This construction ensures that at a given block r, one cannot precompute x for
future blocks since x depends on the nonce of the previous block r — 1.

For Injective Protocol’s settlement logic, we use four candidate VDF algorithms for Eval and
Verify which are the following: Sloth++[2], Permutation Polynomial Chain on an injective rational
map|[2], Wesolowski’s Efficient VDF[§], and Pietrzak’s Simple VDF[9]. In Sloth-++ or Permutation
Polynomial Chain with SNARK proposed by Boneh, Bonneau, Biinz, Fisch, an Iterated Sequential
Function in the form of f(t,z) = g® (r) =gogo...ogisused. Replacing g with our Eval algorithm

——
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For Sloth++[2], a proposed improvement on the Sloth [10] function that integrates SNARK for
succinct verification, given @ € Z; where p is a sufficiently large prime such that p = 3 mod 4,
Eval(z) =/ mod p = 2% mod p. For verification, = mod p = Verify(y) = y?, it will also produce
SNARKProve(ek,y) = .

For permutation polynomial chain on injective rational maps[2], we use a candidate polynomial
proposed by Guralnick and Muller[11] over Fym:

(z* —ax —a) - (2° — ax + a)® + ((z° — azx + a)? + 4ax)5T1/2
2%

where s = p” for odd prime p and some integer r and a is not a (s — 1)th power in Fym. Eval(z) will
be an algorithm that calculates the inversion of the polynomial with difficulty parameter s. This
proposal assumes that computing polynomial GCDs is the fastest inversion method, requiring at
least s sequential steps even if evaluated on optimized hardware with at least s parallel processors.
However non-optimized hardware with minimum parallel processors will evaluate Eval at 0(52) time.
Modifying Setup, we can implement Wesolowski’s[8] construction that uses the Rivest, Shamir,
and Wagner (RSW)[12] time-lock puzzle based on a trapdoor of group G of unknown order. We
do not need an Iierated Sequential Function for an RSW construction as the difficulty parameter
¢t is incremented sequentially during the evaluation. But this construction does not satisfy the
decodable property that the previous two constructions do, as there is no efficient way of computing
the inversion of the RSW algorithm. RSW assumes that given y = 22" mod N , an evaluator would
need t sequential squarings to evaluate y if the group order or factorization of N is unknown. To
implement this, we will modify Setup by creating an unknown group order using Wesolowski’s[8]
imaginary quadratic order. This way, Setup can simply choose a random discriminant, assuming
that class group cannot be computed faster than solving RSW when the discriminant is large.



Pietrzak[9] proposed a VDF candidate that improved upon Wesolowski’s RSW puzzle by imple-
menting a halving protocol, which allows for parallelism in the proof construction and a reduced
proof time of ~+/t time. However, this comes at a cost of proof size and verification time at a factor
of log(t).

3.3 1-Round Settlement Model

We propose a model where orders are settled in the same round that they are made (§ = 0)
where the settlement logic deterministically selects the take order with the highest . From round
to r+1, takers continuously submit a sequence of Commits with incremental ¢ until the end of the
round and the settlement smart contract will evaluate the winning take order at round r+1.

Ty discovers T, order
and computes V(xp)

Ty races to
d Time t send Commit r+1
Ty
> | Confirm(my(2), b, Yo, M, t2, Sy,)
(1) T (2)
Uy 1 Ta(2 Ta(3 Ta(d
a(1) a(2) a(3) a@ Confirm(7a(4). Tas Ya, M, 4, Sy,)
fa tqg > 1o

T, wins M

T, discovers M and : T, continuously sends
computes V(z,) locally : Commit until r + 1
I
I

T, sends first Commit at ;

In the above diagram we have T}, an honest taker with his starting value x,, and T} an adversarial
front-runner (or a colliding honest taker who submitted for the same make order M but at a later
time) with his respective starting value x. T, computes V(z,) locally and submits the first proof
Tq(1) With some delay ¢;, which he chooses. T}, after observing T,’s first Commit will race to compute
t. However, due to T,’s head-start, it would be exponentially more difficult for T} to generate a final
t that’s larger than T,’s, even if T, is using non-optimized hardware.

However, this model is only collision-proof and front-running resistant. Although doing so would
be economically costly and risky, an adversary could precompute all make orders in an orderbook
{My, Ms, ..., M,} in parallel at the start of each round and submit a final ¢ higher than that of an
honest T, after it observes T,’s first Commit (grinding attack). Network nodes or miners could also
block T,’s follow up Commit transactions and then submit their own Commits with a higher ¢ value,
thereby successfully front-running 7,’s order.

Still, this basic model is useful for settling inter-exchange trades and offering collision resistance
for closed-liquidity relayers as well as for relayers that already have front-running resistant measures.



3.4 Front-Running Proof Model

To tully combat front-running, we propose a model that implements a commit-and-reveal schemel[4]
with a delay factor of § > 1.

Definition 3.6. Recall that for a take order T submitted to the settlement smart contract by 7, at
block r, xg = H(Sig(sk, m = nonce,_1||T)) = H(S,) as previously defined. T, submits zo (denoted
as x,) to validate his T' (i.e. "revealing" it) by sending the corresponding Commit after at least 1
round but within § rounds. The faker then uses z, as the starting value for his VDF construction.
To prevent a grinding attack where adversaries attempt to reconstruct the hash by guessing all
combinations, commitment information x, is comprised of T,’s signature on a message nonce,_q
and T

Definition 3.7. T, submits his intent to take T by sending a TakeRequest(x,, A} transaction to the
settlement logic. At a later block within the § block time frame, T, will submit Commits which will
be verified with TakeVerif where TakeVerif(H(S,), z,) = {True, False}.

In the below diagram, we have a model with § = 1 and T}, is an adversarial front-runner attempt-
ing to front-run 7,’s order:

T;, races to send Commit

r r+1 on optimized hardware '+ 2
Ty sees my(1)
> Confirm('fr;,(;]),tb,xb)
Ty Th(1)  Th(3)  Th(5)
T Ta(1 Ta(2 Ta(3
a W @) (;) Confirm(my (s, tas Ta)
TakeVerif(T,) = {True}
TakeVerif(T,) = {False}
T, discovers M, sends TakeRequest, T, continuously sends T, wins M
and begins computing Eval(ek, z,,) Commit until block r 4+ 2

In this scenario, T, sends TakeRequest at block » and submits Commits during block r + 1. T}
seeing T,,’s Commits, discovers T and attempts to front-run the trade by submitting Commits with a
higher hardness parameter ¢ using optimized hardware. Since T3 did not send TakeRequest in block
r, its take order is deemed invalid by TakeVerif and was rejected, even though its ¢t was higher.

In order to still have the opportunity to front-run, 7T} can submit TakeRequests for every M on
the orderbook for every single round and simply not submit Commits so the orders are never revealed
and hence never filled. Beyond the fact that doing so would incur significant gas fees, this attack
can be made even more costly by requiring the trader to post a deposit which will be forfeited if a
large number of TakeRequests are submitted without a follow up Commit.



3.5 Practical Considerations

In the scenario where two takers submit the same TakeRequest at different times but still within
the same block, a fair system would allow the taker who submitted the TakeRequest first to win
the trade. Because obtaining an accurate timestamp for a given TakeRequest is impossible in an
asynchronous network, we use the ¢ value in Commit to adjudicate who submitted the TakeRequest
first in the previous block. However, this system allows a trader using optimized hardware would
be able to win traders over a trader using commodity hardware even if the trader using commodity
hardware submitted the TakeRequest earlier.

We first mitigate this issue by selecting VDF candidates that offer no advantage when computed
on parallel processors. Sloth++, Pietrzak’s RSW VDF, and Wesolowski’'s RSW VDF are three
candidates that satisfy this property due to their sequential nature. However, it is still unclear
which VDF candidate is best suited for our setup. In Wesolowski’s VDF and Pietrzak’s RSW,
proof generation occurs after VDF evaluation while in Sloth++-, proof generation can be computed
in parallel. Furthermore, proof generation takes O(t) time for Wesolowski’'s RSW but only O(v/t)
time for Pietrzalk’s RSW. However, this speedup comes at a sacrifice of longer verification time and
larger proof size by a factor of log(t). Extensive testing will be required to determine the best VDF
candidate for our use case.

In order to equal the playing field, traders could delegate the VDF computation and proof gen-
eration to external computation providers that run on optimized hardware. However, we recognize
that doing so introduces elements of centralization and can create a suboptimal user experience.

3.6 Sidechain Implementation

In our setup, the settlement logic is executed by a trade execution coordinator (TEC) which uses
the Ox V2 protocol[13]. The smart contract address of the TEC will become the senderAddress
parameter for any make order, which will enforce that only take orders approved by the TEC will
successfully fill the make order. In turn, the TEC smart contract establishes the true sequence of
incoming take orders by using a sidechain which uses the Front-Running Proof Model described in
the previous section. The TEC then allows the take orders it finds valid to succeed by performing
the exchange on Ox. By using a sidechain for trade execution, traders can submit Commits to the
sidechain without consuming significant gas. Besides saving on gas, another advantage is that the
sidechain settlement logic is protocol agnostic, meaning it can determine a fair sequence of orders
for any DEX protocol.

Furthermore, the TEC on the sidechain can allow for liquidity sharing across several distinct
DEXs. For example, the TEC could relay orders from another decentralized exchange such as IDEX
[14], thus creating shared liquidity. As described in 2.3, the TEC can also serve as a liquidity
aggregator, allowing a trader to access and trade on multiple orderbooks from multiple exchanges.

4 'Trustless Relayer Network

In conjunction with our settlement logic proposal, we introduce Injective Relayer - a decentral-
ized, trustless relayer network hosted on the same sidechain. The relayers in this network match
orders using a non-interactive commit-reveal scheme which prevents trade censorship and front-
running. The relayers are also trustless insofar as individual relayers have no incentive to act
dishonestly.

The relayer network is hosted on a sidechain that satisfies the following properties (assuming less
than 1/3 of nodes are Byzantine):

e Decentralized: The network is permissionless and allows any participant to join the network
as validators with minimal barriers.
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e Frequent State Machine: The network updates in a stateful nature.

e Trustless: An individual node cannot profit from front-running any incoming trades or manip-
ulating the sequence of orders.

e Consistent: The orderbook is always accurate and forks are prevented (consistency is priori-
tized over availability under the CAP theorem [15])

4.1 Preliminary Definitions

Definition 4.1. Extending our VDF construction from 3.2, we use Encrypt as component of a
time-lock puzzle as follows:

e Encrypt(y,vk) = = which takes y and verification key vk and outputs starting value = which
is used as the input for Eval.

Definition 4.2. The taker submits an encrypted take order E(T) containing his order information
which is comprised of his address A, price P, volume V, Maker address M, and taker signature S,
at round 7:

E(T) = E(A[|P|[V|IM][S,, k)

where a taker takes his take order message m =T = A||P||V||M||S, and encryption key k and per-
forms symmetric encryption E(T") to generate the encrypted order information. In our construction,
k is generated from 7. Therefore for simplicity, we abbreviate E(T, k) as E(T).

Definition 4.3. The relayer orderbook is hosted on the sidechain as a stateful system with an
inconsistent state transition time. We denote o as a given state, M, as an orderbook state which
consists of all outstanding make orders, T, as a list of all the decrypted take orders in a state, and
function Match: M, — Ty, = M,,., where N is the current state number. Match is an order
verification and matching algorithm such that for every take order T, it verifies the signature S,
performs a balance check, prunes the orderbook, executes the trades, and updates the individual
make order’s state.

4.2 Verifiable Delay Functions as a Time-Lock Puzzle

We construct a time-lock puzzle using verifiable delay function candidates. For a naive construc-
tion we require that the candidates satisfy decodable, sequential, and efficiently verifiable properties.
Hence, permutation polynomial chain and Sloth++ satisfy the aforementioned properties while can-
didates derived from RSW do not.

For Sloth++ and permutation polynomial chain, our proposed Encrypt algorithm is the inversion
of the Eval function. In Sloth++’s case, given y € Z; and p = 3 mod 4, Encrypt will be Encrypt(y) =

yzh mod p = x. Therefore Eval requires ¢ iterations of modular square roots to retrieve y. Encrypt
must inform whether message y is a quadratic residue as+/z mod p yields both y mod p as well
as —y mod p. Hence, knowing this property allows the relayer nodes to distinguish the intended
message from y and —y. However, this information allows attackers to limit the prime field p by
half in an ideal p where half of the field’s integers are quadratic residues.

Using a permutation polynomial chain does not exhibit this reduction of the prime field but
requires more parallel computation resources to compute the puzzles efficiently. Computing a single
iteration of a candidate polynomial with degree d takes a non-parallel processor O(d?) time while
the same would take a parallel processor only O(d) time. This property creates scalability obstacles
for relayer nodes since computations required for decrypting incoming orders can exceed a relayer’s
available parallel processing power, causing delays in orderbook update. However, this weakness can
be mitigated with proper fault-tolerant task scheduling.
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The relayer network uses a symmetric-key encryption algorithm AES [16] that allows a taker to
send a ciphertext along with a key encrypted by backward VDF function. When a taker wishes to
submit an encrypted order, he creates a key with the hash of take order information H(T) = k,
generates starting value x for Eval with Encrypt(y = H(T'),vk) — z, and then uses k to encrypt the
full take order information E(T, k) with AES. We simplify E(T, k) as E(T) as the key k is generated
from taker information T'. After generating E(T"), the taker then submits E(T) along with = to the
relayer nodes:

Submit(E(T), x)

A relayer node can decrypt the cipher E(T) by computing AES decryption of the ciphertext E(T)
along with the decryption key k which can obtained by computing the forward VDF on x with Eval.

Eval(ek,z) = H(T) = k
D(E(T), k) =T

To verify that the forward VDF computation was done properly, other relayers can check the
proofs 7 obtained from the Eval computation. When a decrypted take order information is indeci-
pherable or incorrect, the proof 7 can be used to identify whether a relayer node evaluated the VDF
improperly or the taker submitted an invalid order.

4.3 Non-Interactive Commit-Reveal Order Matching

To prevent front-running, we implement a commit-reveal scheme where a taker first submits
the encrypted order information and the information is revealed at a subsequent state. In the
relayer network, we use time-lock puzzles to make the commit-reveal scheme non-interactive, allowing
traders to make trades with only one interaction with the relayer network. As a result, there is
no opportunity for malicious relayers to prevent traders from rejecting a taker’s transaction that
includes the revealed order information since no such transaction exists. The network is structured
as follows:

The relayer network updates the orderbook every 2 states. In state r, denoted as 7., the relayer
nodes aggregate incoming Submit transactions, which each includes encrypted take order information
E(T) and starting value z, from takers into a list of encrypted take orders {(E(T,), zo)|a € N} where
the total number of orders in the list is denoted as «.

After reaching consensus on the take order list at the end of state r+ 1, the relayers decrypt each
take order in the list with D(FE(T), k). To prevent the relayers from front-running the orders by
decrypting E(T') received in state r before state r + 1 begins, the VDF evaluation time (denoted as
typr) must be t, < typr < 2t, . Since typr is part of ¢, ,, this implies that £, <t , < 2t,,.
The hardness parameter ¢ can be periodically adjusted so ty pr can be maintained.

After a relayer node successfully decrypts the take order list, it can submit the list along with
the proofs to the network. The proofs will be then verified on a smart contract maintained by the
network. The first relayer node that decrypts the list will in turn earn some reward. The network
then matches the orders deterministically and reaches a consensus on the updated orderbook M,
at state r 4 2.

The caveat of this model is that the orderbook updates every 2 states while communication with
the takers only occur in 1 of them. As a result, a trader with an unstable connection could submit
take orders based off of a stale orderbook, thus resulting in order failure. It is also important to note
that the network cannot include E(T') from expired states into M, as a front-running relayer node
could easily attack the network by delaying all incoming E(T') until it decrypts them and submitting
them in subsequent states.

r42
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State r begins receiving State r+1 reaches consensus on State r+2 reaches consensus on

encrypted take orders encrypted take order list decrypted take order list
oy Or+1 Ori2
— — — — —
--------------- = E(T) I
"""" > E(T) I
Eval(xy,...,x Matching
M, B L CFPRTYS. 4-)----> M, ------ > M,
---------------- - ET3) T
---------- > E(Ty) Ty
— — — -
Nodes receive incoming encrypted VDF computation time parameter must be longer
take orders and append to the take than order-receiving round to ensure security.
order list Therefore state 2 must be longer than state 1

4.4 Sidechain Attack Vectors

e A Sybil Attack occurs when a malicious trader floods the network mempool with false en-
crypted orders that contains either invalid order information or simply random ciphertexts.
Since the relayer cannot determine the validity of an order from the ciphertext, computation is
wasted during the decryption process. We can prevent this attack by implementing a staking
mechanism that forces traders to stake a fixed amount of token prior to making trades. If the
network finds that a trader intentionally submits a falsely encrypted order, the trader’s stake
is forfeited to compensate the relayer nodes for the wasted computation. However, this design
clearly results in a suboptimal user experience for traders, as they have to make a transaction
to purchase the token to stake prior to trading. To resolve this issue, we propose a more flexible
model where traders have the option to send encrypted or unencrypted orders. Traders who
send unencrypted orders would not have to stake tokens but would pay higher exchange fees
and accept the risk of getting front-run. This mechanism should incentivize traders making
large trades to opt for submitting encrypted orders and staking the native tokens.

e A 33% Attack occurs when the nodes with more than 1/3 of the voting power are Byzantine.
When this occurs, since the network requires at least 2/3 of the voting power to reach consensus,
the network will halt. However, since funds are never deposited to the sidechain, users will
never experience loss of funds.
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